
Skeletal Metastasis

      Five-year survival rates for most patients with 
localized cancers have risen consistently over the past 
few decades, and cancer metastasis patients are also 
surviving longer, partially due to advanced treatments, 
such as treatments with the targeted agent trastuzumab 
in breast cancer[1]. However, once cancer spreads to 
the bone, it typically cannot be cured, accounting for 
significant morbidity and mortality. Skeletal metastasis 
is common in several of the most prevalent cancers, 
including prostate, breast, and lung cancers. In fact, 80% 
of all skeletal metastatic lesions come from one of these 
primary sites[2]. These three types of cancer account 
for approximately 43% of all cancer cases in the United 
States, and they cause approximately 40% of all cancer-
related deaths[1]. Recent data support a high rate of 
hospitalization for patients afflicted by metastatic bone 
disease, confirming that skeletal-related events also lead 
to increased use of health care resource[3].
      In a healthy person, bone turnover is precisely 
regulated and occurs on a constant basis. Osteoblasts, 
which originate from mesenchymal stem cells and 

eventually differentiate into osteocytes, play a role 
in bone formation. Osteoblasts and osteocytes also 
secrete factors that stimulate osteoclastogenesis from 
hematopoietic precursors; one such factor is receptor 
activator of nuclear factor kappa B ligand (RANKL) which 
binds to its receptor RANK, the master osteoclastogenic 
cytokine[4]. Activated osteoclasts resorb the bones. 
Osteoprotegerin (OPG) regulates this process and is 
secreted by osteoblasts and osteocytes. OPG acts 
as a decoy receptor for RANKL, thereby acting as a 
competitive inhibitor. In skeletal metastasis, tumor cells 
disrupt the delicate homeostasis of bone formation and 
resorption through the secretion of catabolic and/or 
anabolic factors that uncouple these functions. 
      The complex process of metastasis consists of 
several steps[5]. Primary tumor cells become pre-
metastatic when they exhibit unlimited proliferation, 
evasion of apoptosis, and have access to a new 
supply of blood vessels (angiogenesis)[6]. These cells 
also display physical changes, such as dysplasia and 
karyomegaly. Tumor cells must then acquire a metastatic 
phenotype, generally through mutation or alternative 
activation of proinvasive molecular pathways[7]. This 
process is usually referred to as an epithelial-to-
mesenchymal transition (EMT): epithelial-like cells, which 
are well-organized, fully differentiated, and immobile 
develop into mesenchymal-like cells, which do not 
organize, are undifferentiated, and are mobile. Tumor 
cells then intravasate into surrounding blood vessels. 
Once in the bloodstream, tumor cells that survive 
anchorage independence and immune surveillance 
reach new organs, where they extravasate from blood 
vessels and initiate a metastatic lesion. Angiogenesis is 
important for the growth and maintenance of the tumor 
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in a new microenvironment. Depending on the type of 
primary tumor, metastatic lesions often occur in specific 
organs; bone metastasis occurs most commonly from 
breast, prostate, and lung cancers.  
      Metastasis to the bones involves tumor cells (the 
“seed”) invading the bone cavity (the “soil”[8]) and causing 
a so-called vicious cycle[9]. Upon invasion into the bone, 
tumor cells secrete factors that affect both osteoblasts 
and osteoclasts, disrupting normal homeostasis (Figure 
1). In many cases of skeletal metastasis, particularly 
from breast and lung cancers, the lesions are prone to be 
osteolytic, resorbing more bone tissue than that is being 
formed. Breast cancer skeletal metastatic cells have up-
regulated expression of matrix metallopeptidase-1 (MMP-
1), interleukin-11 (IL-11), and C-X-C chemokine receptor 
4 (CXCR4), which favor osteoclastogenesis and increase 
bone resorption[10]. This results in lower bone mass, pain, 
increased risk of fracture, and other symptoms. In other 
cases, particularly in most prostate cancer metastases, 
lesions are prone to be osteoblastic, forming more bone 
tissue than that is being resorbed. Such lesions—also 
known as osteosclerotic or osteoblastic lesions—contain 

poorly organized collagen fibers that have a woven 
appearance and weak structure, which also results in 
pain and increased fracture risk[11]. 
      Prostate cancer cells generally up-regulate the Wnt/
β-catenin pathway, bone morphogenetic proteins (BMPs), 
platelet-derived growth factor (PDGF), and endothelin-1 
(ET-1), which results in a more pro-osteoblastic 
phenotype[7]. It is becoming more widely recognized that 
most cases of skeletal metastasis have both osteolytic 
and osteoblastic components and that osteolysis is likely 
required for advancement of osteoblastic disease[9,11]. 
The bone resorption marker N-telopeptide type I collagen 
is increased in all skeletal metastases, regardless of 
whether they appear to be osteoblastic or osteolytic, 
indicating that osteoclastogenesis and bone resorption 
occur in all skeletal metastasis[12]. Much more work 
remains to be done to elucidate the complexity of skeletal 
metastasis and to identify molecular targets that can 
retain normal bone homeostasis, while simultaneously 
killing the invading tumor cells.
      The affinity that certain cancers have for the bone is 
still an area under considerable investigation. Studies 

Figure 1. The “vicious cycle” takes place within the tumor-bone microenvironment. Tumor cells secrete factors that stimulate osteoblast 
activation and bone formation. Osteoblasts release RANK ligand and other factors that stimulate osteoclast activation and resorption of the 
bones. This allows for the release of growth factors that stimulate tumor growth and maintenance. These factors and their concentrations can 
change throughout the process of metastasis and can differ from cancer to cancer, which results in a variable balance of bone formation and 
resorption. PTHrP, parathyroid hormone-related protein; ET-1, endothelin-1; TNF-α, tumor necrosis factor alpha; BMP, bone morphogenetic 
protein; RANKL, receptor activator of nuclear kappa-B ligand; M-CSF, macrophage colony-stimulating factor; IL-6, interleukin-6; VEGF, 
vascular endothelial growth factor; IGF, insulin-like growth factor; TGFβ, transforming growth factor beta; CXCL12, chemokine C-X-C motif 
ligand 12; OPG, osteoprotegerin.
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suggest that tumor cells have up-regulated expression of 
cell surface proteins such as CXCR4 or certain integrins, 
and therefore have a higher preference to home to the 
bone[13,14]. Cell adhesion molecules regulate circulating 
tumor cell interactions with endothelial cells in the 
blood vessels of specific organs[15]. Resorbed bone also 
releases a wealth of growth factors that induce circulating 
tumor cell homing, tumor growth, angiogenesis, and 
maintenance. Additionally, endocrine factors such as 
heparanase, osteopontin, and matrix metalloproteases 
are produced by primary tumors and go into circulation 
before actual metastasis occurs, setting up a “pre-
metastatic niche”[16-19]. Alternatively, tumor cells may use 
strategies similar to those of hematopoietic stem cells 
to home to the bone; recent studies have shown that 
prostate tumor cells compete for the niche of such stem 
cells in the bones[20]. 
      In prostate cancer cases, most men present 
with non-metastatic disease; only about 3% of men 
are initially diagnosed with metastatic disease, but 
that number jumps to 12% upon further follow-up[21]. 
However, skeletal metastases are found in approximately 
90% of prostate cancer patients who succumbed to their 
disease[2,22]. In breast cancer, skeletal metastases are 
similarly found in a small proportion of initially diagnosed 
patients, but approximately 43% developed metastasis 
upon follow-up[23]. Upon autopsy, skeletal metastases 
were found in 71% of breast cancer patients and 41% 
of lung cancer patients[24,25]. Five-year survival rates 
decrease dramatically in patients with metastatic disease 
when compared with patients with local disease (Table 
1). In prostate and breast cancers, skeletal metastasis 
is so prevalent that it is probable that the majority of the 
tumor burden of patients who succumb to the disease 
will reside in the bone[9]. Skeletal-related events are 
defined as pathologic fractures, spinal cord compression, 
or bone pain requiring palliative radiotherapy and 
orthopedic surgery[23]. Pain is especially common in the 
load-bearing bones such as the femoral neck, pelvis, 
and vertebrae. Approximately 20% of prostate cancer 
patients with bone metastasis are treated for pathologic 
fractures[11]. Skeletal metastasis can cause compression 
syndromes of nerve roots and the spinal cord, inducing 
systemic and head pain. Osteolytic bone lesions induce 
hypercalcemia by overwhelming the calcium homeostatic 

mechanisms in the body; thus, extracellular fluid calcium 
is filtered out and excreted by the kidneys[9]. Phosphate 
and other metabolic imbalances can occur[9]. All these 
symptoms require treatment and palliative care, adding 
to the burden of the patient and increasing the cost of 
health care dramatically. 

Current and Potential Therapies for
Skeletal Metastasis

      Several treatment options exist for patients afflicted 
with skeletal metastasis. Surgical treatment with curative 
intent is recommended for certain oligometastatic 
presentations of skeletal metastasis, but few actual cures 
are achieved. Traditional treatment methods include 
chemotherapy, anti-resorptive medications, radiotherapy, 
and surgical stabilization. Other palliative options include 
narcotic medications and activity restriction. 
      Traditional chemotherapy, such as docetaxel, is 
less effective against bone metastases. A relatively 
new strategy for treating bone metastasis is targeting 
the bone microenvironment itself. Table 2 contains 
an extensive list of potential and currently available 
treatments for skeletal metastasis. Many of these 
treatments can target both the bone microenvironment 
and tumor cells. The most commonly applied strategies 
for treating bone metastasis are surgery, radiotherapy, 
hormone ablation, anti-resorptive strategies, and 
targeted therapies. 

Surgery

      In many cases of bone metastasis, surgery is used 
to treat impending or displaced pathologic fractures. 
Pathologic fractures cause significant morbidity and 
often interrupt ongoing treatment efforts. To this 
end, the primary focus of the orthopedic surgeons 
performing these surgeries is to stabilize the bones 
in the extremities, such as the pelvis, spine, or 
femur. Stabilization is accomplished with prostheses, 
arthroplasty, plates, or intramedullary fixation devices[26]. 
Surgery is effective in improving pain control and 
mobility, and facilitates subsequent efforts to employ 
radiation and chemotherapy[27]. The survival rate of 
patients with skeletal metastasis treated with surgery 

Table 1. Five-year survival rates by stage at diagnosis, 1999-2006

Cancer type Local diseasea Metastatic diseaseb Typical sites of metastasis

Prostate cancer 100% 30% Bone
Breast cancer  98% 23% Bone, lungs, liver, brain
Lung cancer  53%   4% Bone, brain, liver, adrenal gland

aLocal disease refers to invasive malignant cancer that is entirely confined to the primary organ. 
bMetastatic disease refers to a malignant cancer that has spread to any part of the body outside of the primary tumor. 
Statistics were taken from the American Cancer Society[1].
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was approximately 40% after 1 year, 30% after 2 years, 
and 20% after 3 years[28]. In most cases of skeletal 
metastases arising from breast cancer, prostate cancer, 
lung cancer, or melanoma, surgery is not performed with 
the intent to cure, but an indirect survival benefit may 
be derived from enhanced function and performance 
status[29,30]. Surgery has also been reported to prolong 
survival for patients with oligometastatic presentation 
of renal cell  carcinoma, thyroid carcinoma, and 
myeloma[31,32].

Radiotherapy

      Radiotherapy is an effective treatment for skeletal 
metastasis in terms of preventing impending fractures, 

controlling pain, and restoring function[33,34]. In rare 
cases, radiotherapy has been shown to have a curative 
effect on bone lesions. Radiation is often used as a 
stand-alone treatment for radiosensitive cancer types, 
and as an adjuvant to surgical stabilization of pathologic 
fractures[35]. External beam radiation therapy has been 
the mainstay in past years of radiotherapy, meaning that 
tumor cells and normal cells receive the same amount 
of radiation in the region being treated. Thus, effort has 
been placed into more efficiently targeting tumor cells 
with radiation. In particular, one study showed that image-
guided high-dose radiation was an effective treatment, in 
the absence of surgery, and that patients were typically 
cancer-free 3 years after treatment[36]. In addition, spine 
stereotactic body radiotherapy allows for delivery of a 

Table 2. Current and potential targeted therapies for skeletal metastasis

Mechanism of action Example therapeutic(s) Stage of clinical availability Reference(s)

Osteoclast apoptosis Bisphosphonates Available [55]
RANKL inhibition Denosumab Available [63]
Microtubule inhibition Docetaxel Available [177]

Cabazitaxel Available [178]
EGFR/ERRB2 inhibitor Lapatinib Available [179]
Cancer immunotherapy Sipuleucel-T / ipilimumab Available [180]
DNA synthesis inhibition Gemcitabine / satraplatin / pemetrexed disodium Available [181-183]
VEGF inhibition Bevacizumab / sorafenib / sunitinib Available [184-186]
CYP17 inhibition Abiraterone acetate Available [44]
Competitive binding to RANK Recombinant osteoprotegrin Available [187,188]
Kinase inhibition Crizontinib Clinical trials [189]
MET/VEGFR2 inhibition Cabazantinib Clinical trials [95-97]
Src inhibition Dasatinib / saracatinib / bosutinib Clinical trials [99]
Vitamin D analogues Calcitriol / EB1089 Clinical trials [190,191]
Proteasome inhibition Bortezomib Clinical trials [192,193]
Radiopharmaceuticals Radium-223 / strontium-89 Clinical trials [194]
Endothelin A inhibition ZD4054 (Zibotentan) Clinical trials [195]
DKK-1 inhibition DKK-1 antibodies Clinical trials [158]
PARP inhibition Veliparib Discovery [196]
Integrin inhibition Cilengitide Discovery [197]
PTHrP inhibition PTHrP antibodies Discovery [81,82]
Cathepsin K inhibition Balicatib / odanacatib Discovery [72-74]
Cathepsin B inhibition CA-074 Discovery [75]
TGFβ inhibition LY2109761 / Ad.sTβRFc / Ki26894 Discovery [90,91,93]
mTOR inhibition Rapamycin Discovery [198,199]
MMP inhibition Batimastat Discovery [200,201]
Organic compounds Plumbagin Discovery [202]
IL-6 inhibition Tocilizumab / elsilimobab Discovery [203,204]
Activin-A inhibition ActRIIA.muFc Discovery [205]
Platelet inhibition XV454 Discovery [206,207]
Wnt inhibition Lrp6 antibodies / IWP-2 / C59 Discovery [154,208-210]

RANKL, receptor activator of nuclear factor kappa B ligand; EGFR/ERRB2, epidermal growth factor receptor/estrogen related receptor beta; VEGF, 
vascular endothelial growth factor; CYP17, cytochrome P450 17α; RANK, receptor activator of nuclear factor; VEGFR, VEGF receptor; DKK, dickkopf; 
PARP, poly (ADP-ribose) polymerase; PHTrP, parathyroid hormone-related protein; TGFβ, transforming growth factor beta; mTOR, mammalian 
target of rapamycin; MMP, matrix metallopeptidase; IL-6, interleukin-6.
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high dose to metastatic regions without inducing severe 
adverse effects on adjacent spinal cord[37]. A promising 
new treatment is alpha-pharmaceuticals, radionuclides 
that emit alpha particles, which deliver a more intense 
radiation than beta-emitting radiopharmaceuticals, in 
a targeted fashion[38]. Radium-223 is the first alpha-
emitting radiopharmaceutical to reach clinical trials and 
has been shown in phases I and II trials to improve 
survival in patients with skeletal metastases from 
prostate cancer[38].

Hormone ablation

      Hormone ablation is an eff icient strategy 
for shrinking breast and prostate cancers; both 
cancers depend on hormones for tumor growth 
and maintenance.  For breast cancer, tamoxifen 
(Nolvadex), which blocks estrogen binding to the 
estrogen receptor[39], is the standard of care following 
chemotherapy. Alternatively, aromatase inhibitors 
(arimidex, aromasin, and femara are currently 
approved) inhibi t  estrogen synthesis, thereby 
decreasing the concentration of estrogen in the body 
and inhibiting the primary tumor’s ability to grow and 
metastasize. Aromatase inhibitors are recommended 
for breast cancer treatment either together with 
tamoxifen or as an extended therapy after tamoxifen[39]. 
These estrogen-inhibiting strategies have increased 
the life span of breast cancer patients and have 
reduced recurrence[39]. No difference in survival has 
been reported between tamoxifen and aromatase 
inhibitor treatment[39]. 
      In prostate cancer, lutenizing hormone-releasing 
hormone (LHRH) agonists inhibit testosterone 
production, which has been shown to shrink prostate 
cancer and increase life span[40]. However, most 
patients become castration-resistant, and many 
of these patients have increased skeletal-related 
events[41]. Deferred androgen deprivation therapy 
may be ideal; the time at which to initiate androgen 
deprivation therapy is still controversial[42].
      One promising drug approved by the Food and 
Drug Ad-ministration (FDA) in 2011 for treatment 
of metastatic castration-resistant prostate cancer 
is abiraterone (Zytiga). Abiraterone inhibits 17 
α-hydroxylase/C17,20 lyase (CYP17A1), which is 
re-sponsible for the conversion of progesterone 
and pregnenolone to testosterone precursors. This 
inhibition of alternate sources of testosterone results 
in an overall decrease in the amount of circulating 
testosterone. In the first clinical trial in Britain in 
2004, abiraterone induced sustained suppression of 
testosterone levels[43]. A report in 2011 showed that 
abiraterone increased overall survival by approximately 

4 months in men with metastatic castration-resistant 
prostate cancer who had previously undergone 
chemotherapy[44]. A later study showed that it reduced 
hormone levels not only in the tumor but also in 
metastatic bone lesions[45].
      Although hormone ablation can benefit patients by 
shrinking their primary tumors, this treatment has been 
suggested to increase the frequency of skeletal-related 
events and may in fact promote osteoclastogenesis, 
thereby “putting fuel on the fire” and increasing bone 
turnover[46]. Estrogen can inhibit osteoclastogenesis, 
which may explain why postmenopausal women more 
commonly suffer from osteoporosis[47]. Also, both 
estrogen and androgen ablation therapies decrease 
overall bone mass density, leading to increased risk 
of fracture independent of metastasis[48-50]. However, 
studies on the selective estrogen response modulators 
raloxifene and tamoxifen have shown that there is no 
increased risk of invasive breast cancer, and in fact 
the risk is decreased in women with postmenopausal 
osteoporosis[51,52]. Combined, these data suggest that 
while hormonal ablation is an important and effective 
treatment for primary breast and prostate cancers, it 
may be risky in more aggressive cancers. This topic 
needs further investigation and clarification.

Anti-resorptive strategies

      The theory behind anti-resorptive strategies is 
that by halting osteoclast-mediated bone resorption, 
bone turnover  is  hal ted,  s topping osteolys is 
and decreasing the size of skeletal metastases. 
Bisphosphonates are widely used to treat skeletal 
metastasis and other diseases associated with bone 
loss, such as osteoporosis and Paget’s disease. 
Bisphosphonates can inhibit bone turnover by 
causing osteoclast apoptosis in two ways: by acting 
through toxic metabolites, preventing isoprenylation 
of small GTP-binding proteins[53]; or by inhibiting 
farnesyl pyrophosphate synthase, which is essential 
for stability of the osteoclast cytoskeleton[54,55]. 
Additionally, bisphosphonates can directly induce 
cancer cell apoptosis and inhibit pro-osteoclastic gene 
expression[56]. The most serious adverse effects of 
bisphosphonates are renal failure and anaphylaxis[57]; 
two other rare adverse effects are osteonecrosis of the 
jaw and atypical femur fractures[58]. Table 3 contains a 
list of available bisphosphonates. 
      Zoledronic acid (ZA; also known as zolendronate 
or Zometa) is the most commonly used and most 
potent bisphosphonate on the market[59]. It can be 
used at a lower dose (4 mg) than pamidronate (90 
mg), another approved bisphosphonate[57]. Treatment 
with bisphosphonates decreased the number of 
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Table 3. Currently available bisphosphonates 

Bisphosphonate Commercial name Dosage route Reference

Zoledronic acid Zometa/ Reclast Intravenous     [57]
Pamidronate disodium Aredia Intravenous   [211]
Alendronate sodium Fosamax Oral   [212]
Etidronate disodium Didronel Oral   [213]
Ibandronate sodium Boniva Oral   [214]
Risedronate sodium Actonel Oral   [215]
Tiludronate disodium Skelid Oral   [216]

skeletal-related events and lengthened the time-to-first-
skeletal-related event in breast and prostate cancers, 
as well as in multiple myeloma[57]. Despite their wide 
use, bisphosphonates have no overall survival or 
disease-free survival advantage and do not fully inhibit 
skeletal metastasis or its morbidity. The lack of survival 
advantage could be because metastatic tumors have 
already caused debilitating damage in the bone before 
bisphosphonates are even used for treatment. ZA is 
now undergoing clinical trials with various other adjuvant 
therapies[11]. Another interesting use of bisphosphonates 
was highlighted in a recent study that used alendronate, 
conjugated to a peptidomimetic ligand against activated 
integrin α4β1, to serve as a bone-seeking agent to direct 
the therapeutic compound to the bone[60]. 
      Targeted anti-RANKL therapy is evolving as an 
anti-resorptive strategy. Denosumab (also known as 
Xgeva) is a monoclonal antibody that competitively 
binds RANKL, resulting in potent inhibition of bone 
resorption[61]. Although mechanistically similar to 
bisphosphonates, denosumab may be more potent 
in preventing skeletal-related events in the setting of 
skeletal metastasis[62]. Denosumab has been shown to 
decrease the rate of skeletal-related events from 18% 
(ZA) to 7%[63]. Treatment with denosumab decreased the 
risk of renal toxicity as compared with bisphosphonates. 
More data are needed to determine whether anti-RANKL 
therapy is more efficacious than other anti-resorptive 
strategies in skeletal metastasis and to determine its 
relative cost-effectiveness[64]. Denosumab is in clinical 
trials to determine its effectiveness in combination with 
other chemotherapies. However, long-term adverse 
effects could be important; recent studies have shown 
that patients treated with bisphosphonates for more 
than 5 years had a higher risk of suffering atypical 
femur fractures, possibly caused by suppressed, bone 
turnover-related microdamage[65]. While denosumab has 
been approved by the FDA for use in non-metastatic 
prostate cancer patients to reduce the risk of fracture, it 
was recently rejected for treatment of bone metastasis in 
prostate cancer patients because it did not significantly 
increase overall survival[66]. 

      Other RANKL inhibitors, such as RANK-Fc and 
OPG-Fc, have been developed for treatment of skeletal 
metastasis. Several animal models that mimic advanced 
prostate cancer, breast cancer, or non-small cell lung 
cancer, representing both osteolytic and osteoblastic 
skeletal lesions, were used to determine whether these 
RANKL inhibitors were practical and effective in inhibiting 
bone metastases[67-69]. In a murine model of human 
A431 epidermoid carcinoma bone metastasis, OPG-Fc 
inhibited RANKL, suppressed tumor-induced osteolysis 
and ultimately inhibited tumor cell growth in the bone, 
but there was no effect on the subcutaneous growth of 
the tumor[70]. The bone metastasis suppression effect of 
these RANKL inhibitors seems to be more prominent if 
combined with therapeutics that also target the tumor 
itself[71]. 
      Although other drugs against bone metastasis have 
used the same strategy of inhibiting osteoclasts or 
bone turnover, none have been as successful in clinical 
trials as bisphosphonates and denosumab. Cathepsin 
K is a protease involved in bone resorption, and pre-
clinical studies inhibiting cathepsin K have shown 
promise in ablating skeletal metastasis[72]. Balicatib 
inhibits cathepsin K and showed potential to inhibit 
osteolysis and regain bone mass, but it was withdrawn 
from clinical trials due to safety issues[73]; Odanacatib, 
another cathepsin K inhibitor, was also withdrawn from 
clinical trials for breast cancer bone metastasis for safety 
concerns[11,74]. Most recently, intraperitoneal injections of 
the cathepsin B inhibitor CA-074 into mice in the 4T1.2 
model (a breast cancer model that exhibits spontaneous 
bone metastases) reduced bone metastases significantly 
(P < 0.05), indicating an important role for cathepsin B in 
late-stage skeletal metastasis[75].

Targeted therapies

      A promising strategy for treating cancer as a whole, 
as well as for treating skeletal metastasis, is to focus 
on specifically up-regulated oncogenic molecular 
pathways. The principle of this strategy is to target and 
inhibit pro-metastatic genes to stop or reduce the ability 
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of cancer cells to metastasize. In this section, we will 
highlight some hopeful molecular targets in the skeletal 
metastasis field. 

PTHrP
      Parathyroid hormone-related protein (PTHrP) has 
important roles during the development of several 
organs and is dys-regulated in several types of cancer. 
The expression of PTHrP correlates with prostate cancer 
progression[76], and PTHrP can increase prostate cancer 
cell migration and invasion[77]. EB1089, a potent agonist 
of the  vitamin D signaling, can reverse these effects 
by down-regulating PTHrP[77]. Furthermore, PTHrP 
increases osteoblastic cell survival through the vascular 
endothelial growth factor receptor 2 (VEGFR2) pathway, 
again indicating its importance in prostate cancer bone 
metastases[78]. PTHrP has also been linked to breast 
and lung cancer skeletal metastases[79-81]. Humanized 
monoclonal antibodies that block PTHrP binding to its 
receptor reduce bone metastasis in a breast cancer 
model[82] and in a lung cancer model[81].

TGF 茁 
      Transforming growth factor beta (TGFβ) is 
important during development, and its up-regulation 
has long been known as a crucial factor in promoting 
cancer metastasis[83,84]. TGFβ is the most abundant 
cytokine in the bone matrix[85,86]. Its release during bone 
resorption helps induce bone marrow stromal cells, 
serving to couple bone resorption and formation during 
development and bone remodeling[87,88]. Because TGFβ 
can induce EMT in tumor cells, it likely has a major role 
in metastasis, and as such represents a major target for 
treatment[89]. Ki26894, a novel inhibitor of TGFβ, inhibited 
the ability of breast tumor cells to secrete PTHrP, reduced 
the frequency of bone metastases, and increased the 
life span of mice injected with breast cancer cells[90]. 
When the dominant-negative mutant TβRIIΔcyt, which 
is unresponsive to TGFβ, was overexpressed in breast 
cancer cells injected into mice, skeletal metastasis and 
bone destruction were reduced, and overall survival 
increased[91]. Interestingly, this phenotype was shown to 
be due to a decrease in PTHrP expression[91]. The TGFβ 
signaling is a biomarker of poor prognosis in prostate 
cancer[92]. The TGFβ receptor type I (TGFβRI) inhibitor 
LY2109761 not only decreased tumor growth in the bone 
but increased bone mass[93]. Finally, oncolytic viruses 
expressing TGFβ receptor type II (TGFβRII) fused to 
human Fc (Ad.sTβRFc) reduced skeletal metastasis 
and associated hypercalcemia, indicating a therapeutic 
potential[94].

MET/VEGF
      Cabozantinib (XL 184) has shown promise in 

clinical trials. It inhibits the activity of several receptor 
kinases, most potently hepatocyte growth factor receptor 
(MET) and vascular endothelial growth factor receptor 
(VEGFR), which are functionally linked[95,96]. Studies 
have suggested that bone formation and angiogenesis 
are coupled, indicating that VEGF inhibition would be 
an important strategy for halting skeletal metastasis[83]. 
In one clinical trial in which 62 patients underwent 
cabozantinib treatment, 85% achieved complete or 
partial resolution of metastatic lesions upon bone 
scan[97]. Cabozantinib is now in phase III clinical trials for 
castration-resistant prostate cancer and will be used in at 
least 12 other clinical trials for other tumor types. 
      There are other molecular targets that also have 
promise in this field. Notably, the inhibition of Src kinase 
and mammalian target of rapamycin (mTOR) has each 
been shown to have positive effects on reducing bone 
metastasis[98,99]. These and other targets can be found in 
recent reviews[41,100-103].

Summary

      In each of these pre-clinical models or clinical cases, 
investigators have reported that inhibition of a specific 
molecular pathway reduced the frequency of skeletal 
metastasis, increased patient survival, or both. However, 
there is still no standard treatment for patients suffering 
from painful and lethal skeletal metastasis. This suggests 
that skeletal metastasis is more complex than originally 
imagined and that we as a research community have 
not yet identified appropriate targets or combinations of 
therapies to successfully manage and cure this disease. 
In the past ten or more years, there have been 8 
negative phase III clinical trials for increasing the overall 
survival of men with skeletal metastatic prostate cancer. 
This has continued with the failure of denosumab to 
increase life span. Strategies that target only one cell 
type or microenvironment, such as the tumor or the bone 
niche, are not likely to succeed. Accordingly, the need 
for better experimental models, novel clinical targets, 
and better use of the knowledge we have is glaringly 
apparent. 

The Wnt Signaling in Skeletal
Metastasis

      The roles of the Wnt/β-catenin signaling (Figure 
2 )  i n  tumor igenes is ,  bone  deve lopment ,  and 
skeletal metastasis have been extensively studied. 
The Wnt signaling is important in prostate cancer 
tumorigenesis[104-109] and is positively correlated with the 
progression of prostate cancer[110-114]. While breast cancer 
tumorigenesis and poor prognosis have been associated 
with increased Wnt signaling[115-119], there is less evidence 
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to suggest that active Wnt signaling induces skeletal 
metastasis[120]. However, recent studies have shown an 
association between increased β-catenin-independent 
Wnt5a expression and brain metastasis[121]. There is also 
strong evidence that the Wnt signaling is crucial in the 
development of the breast and prostate glands[122]. Lung 
tumorigenesis is also associated with up-regulated Wnt 
signaling[123-126]. Cigarette smoke, which increases the 
risk for lung cancer substantially, may even activate the 
Wnt signaling[127].
      One of the well-established roles of the Wnt 
signaling is the activation of the osteoblast lineage from 
mesenchymal stem cells and the maintenance of bone 
homeostasis[128]. Based on studies using genetically 
engineered mice, the downstream effector molecules 
in the canonical Wnt pathway (such as β-catenin) and 
the endogenous inhibitors of the Wnt signaling [such 
as Dickkopf-1 (Dkk1) and sclerostin] play profound 
regulatory roles by direct action on osteoblasts or 
indirect action on osteoclasts[129-132]. In addition, Wnt 
proteins seem to have a role in regeneration during bone 

healing[133]. These data suggest that the Wnt signaling is 
crucial for bone development and turnover and, as such, 
is implicated in the interruption of bone homeostasis 
during skeletal metastasis and could be an important 
player in the development and progression of these 
lesions.
      In prostate cancer, the Wnt signaling is involved 
in osteoblastic bone metastasis. Wnt1 and β-catenin 
expression levels are low in normal prostate cells but 
high in prostate cancer cells; high levels are seen in 
85% of human skeletal metastases[110]. Two studies in 
prostate cancer cell lines have shown that inhibition of 
the Wnt signaling (via overexpression of the endogenous 
Wnt inhibitory factor WIF1 or knockdown of β-catenin 
itself) causes a reversal of EMT and the metastatic 
phenotype[134,135]. Hall et al.[112] showed that knockdown 
of the Wnt inhibitor Dkk1 in osteolytic PC3 xenografts 
induced osteoblastic activity. Alternatively, when Dkk1 
was overexpressed in osteoblastic C42B4 xenografts, 
the tumors became highly osteolytic. Taken together, 
this indicates that induction of the Wnt signaling from 
prostate cancer tumor cells contributes to osteoblastic 

Figure 2. The Wnt/β-catenin signaling pathway. Wnt is secreted, binds to receptors, and causes β-catenin to accumulate in the cytosol and 
subsequently migrate to the nucleus to activate transcription of Wnt target genes. Wls/Evi, Wntless/evenness interrupted; sFRP, secreted frizzled-related 
protein; WIF1, Wnt inhibitory factor 1; SOST, sclerostin; DKK1, Dickkopf 1; LRP5/6, low-density lipoprotein receptor-related protein 5/6; Dvl, disheveled; 
GSK3, glycogen synthase kinase 3; Apc, adenomatous polyposis coli; CK1α, casein kinase 1 alpha; JNK2, c-Jun N-terminal kinase 2; TCF, T-cell factor. 
The authors have published this figure previously in "Wnt/β-catenin signaling in normal and cancer stem cells" [Cancer, 2011,3:2050-2079] and have got 
the permission to republish this figure.
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skeletal metastases[112]. 
      Active Wnt signaling induces bone morphogenetic 
protein activity, and Wnt can induce osteoblastic 
activity in culture both in BMP-dependent and BMP-
independent fashions[136]. Additionally, loss of Dkk1 
promotes osteoblastic activity and the expression of 
BMP4 and BMP6[136]. A study using a canine prostate 
cancer model showed that Dkk1 overexpression potently 
inhibited bone growth in a xenograft model, but it 
also induced primary tumor growth and increased the 
rate of metastasis[137]. When osteoblast cultures from 
Lrp5-knockout mice were treated with medium from a 
prostate tumor cell line capable of inducing osteoblastic 
metastases in vivo, there was no effect, suggesting 
that at least in this cell line (MDA PCa 2b), prostate 
cancer-induced osteoblastic activity is mediated by the 
Wnt receptor Lrp5[138]. These data strongly indicate that 
the Wnt signaling is active and potentially causative 
in prostate cancer skeletal metastasis. This idea may 
contrast with data from genetically engineered mouse 
models in which activation of the Wnt signaling by 
knockout of adenomatous polyposis coli (Apc)[107] or 
direct activation of β-catenin[108] induced carcinoma or 
prostate intraepithelial neoplasia (PIN), respectively, but 
did not produce skeletal metastasis. Induction of the Wnt 
signaling at an early stage may cause non-metastatic 
prostate cancer, and induction of the Wnt signaling at a 
late stage may cause osteoblastic metastases. 
      Breast and lung metastases are often osteolytic, and 
dys-regulation of the Wnt signaling has a role in bone 
metastasis in these cancers. Dkk1 expression is up-
regulated in osteolytic breast cancer bone metastases, 
resulting in repression of the Wnt signaling[139,140]. 
Breast cancer cells treated with Wnt3a-conditioned 
media caused osteoblastic metastases and RANKL 
reduction, and this process was blocked by Dkk1-
conditioned media from typically osteolytic breast cancer 
cells[139]. These data indicate that, in contrast to prostate 
cancer, breast cancer operates via repression of the 
Wnt signaling rather than induction, thereby producing 
osteolytic lesions. On the other hand, the Wnt signaling 
stimulates the motility of breast cancer cells, and the 
expression of the Wnt inhibitor secreted frizzled-related 
protein (sFRP1) can inhibit this motility[141]. More work is 
needed to determine the role of the Wnt signaling in the 
processes of primary tumorigenesis, EMT, and skeletal 
metastasis of breast cancer cells. 
      In lung cancer, the Wnt/TCF4 pathway signature 
in a cohort of 368 primary tumors was significantly 
correlated with relapse (P = 0.006)[123]. Additionally, a 
specific Wnt-responsive gene set was associated with 
lung cancer metastasis, and expression of a dominant 
negative version of the Wnt transcription factor TCF4 in 
a xenograft mouse model resulted in significantly fewer 
bone metastases[123]. Another group has shown that 
activation of β-catenin in lung epithelial cells induces 
EMT; interestingly, this phenotype was reversed after 

knockdown of Jun N-terminal kinase (JNK1)[142]. Finally, 
Wnt2 was overexpressed in lung cancer tissue, and 
when Wnt2 was inhibited with a monoclonal antibody 
or siRNA, apoptosis occurred in lung cancer cells[143]. 
These data indicate that aberrant Wnt signaling plays an 
important role in lung cancer cell survival and skeletal 
metastasis. 
      The Wnt signaling is crucial for the proper 
development of numerous cell and tissue types, as well 
as for maintenance of adult stem cell populations[144]. 
Because of this role, the Wnt signaling may contribute 
to metastasis by causing cells to de-differentiate and 
become more mesenchymal-like or stem-like[145,146]. The 
Wnt signaling increases the capacity of mesenchymal 
stem cells to proliferate and migrate, which indicates that 
the Wnt signaling is important during tissue regenerative 
processes, but also suggests that up-regulated Wnt 
signaling could induce higher migration and invasion 
of tumor cells having undergone EMT[147]. In addition, 
the Wnt signaling promotes the self-renewal of prostate 
stem-like cells and growth of prostaspheres in culture, 
suggesting that inhibition of the Wnt signaling could have 
therapeutic value by reducing this stem-like potential[109]. 
Similar conclusions were drawn from studies of breast 
and lung cells[120,148,149]. 
      Due to the well-established role of the Wnt signaling 
in cancer, EMT, and skeletal metastasis, the Wnt 
pathway represents an excellent target for therapy. The 
pathway is complex and has many components that may 
represent therapeutic targets[150]. There are also many 
mechanisms by which the pathway can be inhibited[122]. 
A new way of inhibiting the Wnt signaling is through 
porcupine inhibitors[151]. Porcupine is a membrane-
bound O-acetyltransferase (MBOAT) that is required for 
Wnt ligand palmitoylation and secretion[152]. It is unclear 
whether porcupine inhibitors will have a substantial 
effect in cancer, but there are already pre-clinical trials 
to test that[153]. Several excellent reviews provide insight 
into the many facets of drugging the Wnt pathway in 
cancer[154-156]. 
      Because the Wnt signaling can promote both 
tumorigenesis and osteoblast-mediated bone formation, 
it is unclear how the Wnt pathway should be modulated 
as a treatment in skeletal metastasis. Some studies 
show that promotion of the Wnt signaling via Dkk1 
inhibition increased bone formation in osteolytic lesions 
and decreased osteolysis-related pain and risk of 
fracture[139,157,158]. Others have shown that inhibition 
of Dkk1 results in loss of control of the Wnt signaling 
and promotes proliferation and metastasis of cancer 
cells[137,159]. The level of the Wnt signaling taking place 
in the microenvironment of both the primary tumor and 
skeletal metastasis may be unique for each individual 
tumor. Therefore, the most likely use of Wnt inhibition will 
be against tumors in which the Wnt signaling is highly 
up-regulated, but all indications suggest that the strength 
and specificity of Wnt inhibition must be strictly regulated 
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Figure 3. Experimental models of 
skeletal metastasis. Tumor cells can 
be injected at any of the sites shown 
to generate a metastasis model. Note 
that the intracardiac, intravenous, and 
intratibial models can only establish 
models of experimental metastasis 
that do not reflect the entire process 
of metastasis (see the description 
of the process of metastasis in the 
“Skeletal Metastasis” section of 
this review). However, spontaneous 
metastasis can be achieved by the 
orthotopic and subcutaneous models, 
which generate primary tumors prior 
to metastasizing.

to be of utmost benefit to the patient.

Mouse Models of Skeletal Metastasis
      Mouse models have provided many insights 
into human disease. The ideal mouse model for 
skeletal metastasis would reproduce all the stages 
of tumorigenesis and metastasis, including genetic 
changes, metastatic phenotype of cancer cel ls, 
and modifications to the bone microenvironment. 
Obviously, this is a difficult goal to achieve. Genetically 
engineered mouse models are generally considered 
to be an accurate way to mimic human cancer, but 
despite numerous attempts, there is currently no 
genetically engineered mouse model that accurately 
and consistently recapitulates the skeletal metastasis 
process[146,160]. 
      Consequently, the present paradigm for modeling 
skeletal metastasis is the xenograft mouse model, in 
which cells from human cancer cell lines or primary 
tumors are injected into immune-deficient mice. These 
cells can form primary tumors that metastasize to the 
bone and other organs. Several immune-deficient mice 
are available for such models, including athymic nude, 
severe combined immune deficient (SCID), non-obese 
diabetic (NOD-SCID), and NOD-SCID-ILR2Gamma-
deficient (NSG) mice[146]. Mouse models of skeletal 

metastasis can be categorized based on the injection 
site: orthotopic, intraosseous, intracardiac, intravenous, 
or subcutaneous (Figure 3). The goal of these models is 
not only to discover the physiological roles of molecular 
pathways and of the unique interactions between 
tumor and the bone but also to determine the effects of 
potential and novel therapeutics. 

Orthotopic injections

      Orthotopic prostate injections are commonly done 
into the ventral or dorsal lobes of the murine prostate, 
as they are the most readily accessible and most 
anatomically similar to the human prostate[161]. Mammary 
orthotopic injections are generally done into the 4th 
mammary fat pad of a 4- to 5-week-old mouse, which 
has been surgically cleared of mammary epithelium 
tissue, leaving behind the fat[160]. Lung orthotopic 
injections are through the chest and directly into the 
lung[162,163]. 
      Because skeletal metastases are relatively rare in 
orthotopic models, such studies are generally centered 
on the development and growth of primary tumors. This 
model can be used to study the effect of novel drugs 
on tumor volume or on the ability of the tumor to invade 
surrounding stroma or to metastasize to lymph nodes. 
If skeletal metastasis can be induced using this type 
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of injection, it provides valuable information as to how 
cancer cells go through the entire process of primary 
tumor formation through the growth and maintenance 
of a metastatic lesion. Cancer cells injected into the 
organ of their origin theoretically behave as they would 
in the original setting because the microenvironment of 
the primary tumor host organ is thought to be important 
for the development of metastasis[164]. However, the 
microenvironments of the human and the mouse differ, 
which may explain why so few bone metastases occur in 
these mouse models.  
      Another important use of orthotopic models is to 
select cell lines that are more metastatic or more likely 
to metastasize to particular organs[165]. For instance, 
the C4-2 prostate cancer cell l ines were derived 
from the LNCaP cell line that was orthotopically and 
subcutaneously injected into nude mice. After the mice 
were castrated and metastasis occurred, metastatic 
cells were removed from lymph nodes or the bone and 
immortalized into novel cell lines, called C4-2B (derived 
from bone metastasis) and C4-2Ln (derived from lymph 
node metastasis)[166,167]. C4-2B cells are now commonly 
used to induce prostate cancer skeletal metastasis in 
research into the efficacy of novel therapeutics.  

Intraosseous injections

      Intraosseous injections are generally done in the 
tibia or femur of the mouse. This model is not a literal 
metastatic model because the cells do not need to 
metastasize from the primary tumor to a distant site. 
However, this model can provide information about how 
cancer cells grow and maintain tumors in the bone, as 
well as about the interactions of cancer cells with the 
bone microenvironment. It is easier to induce tumor 
growth in the bone using intraosseous injections than 
any other type of injection[168]. 
      Because of the bone remodeling that takes place 
in the multitude of mouse models, the pathology 
of the bones in these models must be extensively 
characterized. Assays can be conducted to ascertain 
the osteoblastic or osteoclastic nature of the bones and 
the lesions in them. Radiographic imaging is commonly 
used to evaluate the local bone mineral density or bone 
morphologic changes[136]. Histological tartrate resistant 
acid phosphatase (TRAP) staining is used to look into 
the in vivo osteoclastogenesis induced by cancer cells, 
and it can also be used for in vitro co-culture assays. 
Alkaline phosphatase staining can be used to test 
osteoblast activity, and Von Kossa staining or alizarin red 
staining can be used to assess bone mineralization[112]. In 
addition, single-photon emission computed tomography 
(SPECT) is a valuable imaging tool to determine where 
bone turnover is occurring, and it can be used to 
calculate specific bone parameters and their changes.  

Intracardiac, intravenous, and subcutaneous
injections

      Compared with direct intraosseous injection 
(which is mainly for studying tumor-bone interactions), 
intracardiac, intravenous, or subcutaneous injections 
better mimic spontaneous bone metastasis in humans. 
In these models, metastases most commonly form in 
the lungs because of the direct injection of cells into 
the blood stream[169], avoiding the steps of invasion and 
intravasation of tumor cells. These types of injections 
allow us to study the types of homing that occur during 
metastasis and to examine the interaction of tumor cells 
with the microenvironment of the tissue being invaded. 

SCID-human models

      One model that could incorporate any type of 
injection described above is the implantation of human 
adult or fetal bone together with subcutaneous injection 
of cancer cells into immune-deficient mice[170-172]. This 
model is commonly referred to the SCID-hu model. This 
model provides a human bone microenvironment on 
which cancer cells can home, providing a more accurate 
representation of human skeletal metastasis. In several 
experiments, the human cancer cells preferentially 
homed to the human bone over mouse bone[173]. A 
possible negative to this model is that the fetal bone 
is mostly woven bone, whereas adult bone consists of 
mature lamellar bone. If adult human bone is used, there 
are many biological variables arising from the source 
of the bone that could complicate the interpretation of 
results. 

Summary 

      No current experimental model accurately 
recapitulates bone metastasis, so researchers often 
choose a model having a specific characteristic relative 
to the system they are studying. It is unlikely that 
there will ever be a perfect mouse model of skeletal 
metastasis, due to the heterogeneous nature of cancer 
and metastasis, envi-ronmental factors that cannot be 
mimicked, and the fact that human and mouse genetics 
and physiology are not identical. Today, however, 
the mouse model is the mainstay of experimentation 
in the skeletal metastasis field. There are several 
excellent reviews that provide additional information 
on mouse models and their role in skeletal metastasis 
research[174-176].

Conclusion
      Metastasis and growth of cancer cells in the 
bone is a complex problem with no reliable cure. The 
current clinical treatments do little to prolong the life 
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span of patients. Future treatments will likely target 
not only the primary tumor but also components of 
the microenvironment surrounding tumor lesions. 
The solution likely lies in the synthesis of ideas and 
technologies from several fields. Because of the role 
of the Wnt signaling in carcinogenesis and metastasis, 
the potential for Wnt antagonists as either primary or 
adjuvant therapeutics is an area of promising study. 
In humans, aberrant Wnt activation is seen in primary 
tumors, and increases in osteoblastic metastatic bone 
lesions. In mice, the Wnt signaling can induce cancer 
when activated in epithelial cells. So far, it appears that 
activated Wnt signaling in mice causes carcinoma in 
situ, but no metastasis has been found in these models. 
A significant knowledge gap in the field is the reason that 
activating Wnt in the mouse does not result in metastatic 
cancer. Several potential explanations exist for this. 
The Wnt signaling may be a second genetic event that 

pushes primary tumors toward a metastatic phenotype. 
In prostate cancer, Wnt activation may increase in 
response to decreasing levels of circulating androgens 
during androgen deprivation therapy and then physically 
bind to the androgen receptor to induce castration-
resistant prostate cancer. It is possible that these 
differences are due to the species-specific differences. 
However, it is likely that mouse models will continue 
to provide valuable information for these studies. 
Improvement in the ability of these models to accurately 
replicate key aspects of human prostate tumorigenesis 
will allow assessment of these difficult questions and 
provide the foundation for the development of improved 
treatment of cancer patients with skeletal metastasis.
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