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Abstract 
Breast cancer is a complex disease driven by multiple factors including both genetic and epigenetic 

alterations. Recent studies revealed that abnormal gene expression induced by epigenetic changes, 
including aberrant promoter methylation and histone modification, plays a critical role in human breast 
carcinogenesis. Silencing of tumor suppressor genes (TSGs) by promoter CpG methylation facilitates cells 
growth and survival advantages and further results in tumor initiation and progression, thus directly 
contributing to breast tumorigenesis. Usually, aberrant promoter methylation of TSGs, which can be 
reversed by pharmacological reagents, occurs at the early stage of tumorigenesis and therefore may serve 
as a potential tumor marker for early diagnosis and therapeutic targeting of breast cancer. In this review, 
we summarize the epigenetic changes of multiple TSGs involved in breast pathogenesis and their potential 
clinical applications as tumor markers for early detection and treatment of breast cancer. 
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Review 

Breast cancer is the most prevalent tumor and a 
major cause of morbidity and mortality among women 
worldwide [1] . Over the past decades, there has been a 
significant increase in breast cancer incidence, with more 
than one million new cases each year [2] . Diagnosis of 
breast cancer at the early stage results in a high survival 
rate (~98%), whereas diagnosis at the advanced stage 
results in a significantly lower survival rate (~27%) [3] . Due 
to the lack of early detection methods for breast cancer, 

current therapies are necessary but not sufficient to 
improve the survival of women with breast cancer. Thus, 
identification of tumor markers for the early detection and 
therapeutic targeting of breast cancer is essential. 

Although much progress has been made in 
understanding the biology of breast cancer, its etiology is 
still not very clear. Activation of oncogenes and 
inactivation of tumor suppressor genes (TSGs) 
synergistically contribute to the cancer progression. Early 
studies have demonstrated that genetic alterations, such 
as chromosomal translocations and point mutations, are 
responsible for TSG inactivation. Recently, accumulating 
evidence indicates that epigenetic alterations provide an 
alternative yet important mechanism for TSG silencing. 
Epigenetic modifications include DNA methylation and 
histone modifications, which cooperatively affect 
chromatin structure and genomic stability [4,5]  . Epigenetic 
modifications play important roles in the regulation of cell 
cycle, apoptosis, signal transduction, and tumorigenesis [6] . 

A series of TSGs silenced by promoter CpG 
methylation have been identified in breast cancer, 
indicating aberrant methylation of TSGs as a key factor 
in breast cancer pathogenesis. In addition, breast cancer 
usually progresses gradually from a less aggressive, 
hormone­dependent to a highly invasive,  hormone­ 
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independent phenotype  [7,8] , implying that silencing of 
hormone­mediated TSGs occurs in breast cancer 
progression. Frequent TSG methylation in breast cancer 
makes it a potentially useful marker for disease 
diagnosis. Here, we summarize some recent studies on 
epigenetic alterations in breast cancer and further 
discuss their biological and clinical implications． 

Aberrant Promoter Methylation Silences 
Critical TSGs in Breast Carcinoma 

Although inactivating mutations of TSGs have been 
well documented in familial breast cancer, the incidence 
of mutations in sporadic breast cancer is rare. Yet, a 
large body of evidence has demonstrated that epigenetic 
aberration is a key player in silencing a variety of TSGs, 
which triggers breast tumor progression [9] . Identification 
of an epigenetic gene profile for breast cancer will thus 
be helpful to elucidate the molecular mechanisms 
underlying breast cancer pathogenesis. 

As shown in Table 1, a series of promoter­ 
methylated key TSGs involved in breast tumorigenesis 
have been reported, including genes for cell cycle 
regulation (  ,  ,  ,  ,  , 

) , DNA repair [glutathione S­transferase pi 1 
(  ), O­6­methylguanine­DNA methyltransferase 
(  ), breast cancer 1 (  ), human mutL 
homolog 1 (  )], hormone and receptor­mediated 
cell signaling pathways [estrogen receptor alpha (  ), 
progesterone receptor (  ), retinoic acid receptor beta 
(  ), Ras association domain family member 1 
(  ), spleen tyrosine kinase (  ), TGF茁  
receptor II (  ), high in normal 1 (  ), normal 
epithelial cell­specific 1 (  ), suppressor of cytokine 
signaling 1 (  ), secreted frizzled­related protein 1 
(  ), WNT inhibitory factor 1 (  )], apoptosis 
[adenomatous polyposis coli (  ), death­associated 
protein kinase (  ), hypermethylated in cancer 1 
(  ), homeobox A5 (  ), TWIST homolog of 
drosophila (  ), target of methylation­induced 
silencing (  )], cell adhesion and metastasis 
[cadherin 1 (  ), cadherin 13 (  ), APC, tissue 
inhibitor of metalloproteinases 3 (  )], angiogenesis 
[maspin, thrombospondin 1 (  )], and other 
processes. These epigenetic changes may lead to 
chromosomal instability, accumulated mutations in 
critical cell signaling pathways, ultimately contributing to 
breast cancer progression. Our group has also identified 
a series of TSGs silenced or down­regulated by 
promoter CpG methylation in breast cancer, such as 

, phospholipase C delta 1 (  ), CKLF­like 
MARVEL transmembrane domain containing 5 
(  ), CKLF­like MARVEL transmembrane domain 
containing 3 (  ), opioid binding protein/cell 
adhesion molecule­like (  ), ubiquitin 

carboxyl­terminal esterase L1 (  ), deleted in liver 
cancer 1 (  ), interferon regulatory factor 8 (  ), 
and dapper homolog 1 (  ), that are involved in 
breast tumor cell cycle control, apoptosis, and 
metastasis [10­16] . 

Clinical Implications of Promoter 
Methylation in Breast Cancer 

Understanding the critical roles of promoter CpG 
methylation­mediated transcriptional repression/silencing 
in breast cancer led us to consider its potential clinical 
applications. Here, we further discuss the usage of DNA 
methylation markers for early cancer detection and 
prognosis prediction, as well as the application of 
demethylation drugs in breast cancer therapy. 

Aberrant promoter methylation as a marker for 
early detection and prognosis in breast cancer 

Women diagnosed with early­stage breast cancer 
have a better prognosis and require less severe 
treatment regimens than those diagnosed with advanced 
stage diseases. With the development of magnetic 
resonance imaging (MRI) and digital mammography, the 
accuracy of breast cancer detection has distinctly 
increased. However, current screening methods lack 
sensitivity and specificity [17] , and new methods with higher 
sensitivity, specificity, and lower invasiveness are 
urgently required. Using tumor markers thus provides a 
valuable alternative approach. 

In recent years, many studies demonstrated that 
aberrant DNA methylation has strong potential to serve 
as a novel tumor marker for early diagnosis and 
progression evaluation. First, aberrant promoter 
methylation of a series of TSGs is a common feature of 
malignancy; compared to gene mutations and copy 
number alternations, it occurs more frequently as an 
early event in tumorigenesis. Importantly, different types 
of tumors present distinctive promoter methylation 
profiles, which can improve specificity and sensitivity for 
tumor detection. Second, aberrant promoter methylation 
patterns can be detected even when they are embedded 
in an excess amount of normal DNA molecules. Third, 
techniques required for the detection of methylation 
patterns, such as methylation­specific PCR (MSR), 
MethyLight, and quantitative multiplex methylation­ 
specific PCR (QM­MSP), are relatively simple, rapid, 
non­radioactive, and sensitive. 

A number of cancer­specific genes have been found 
to be frequently methylated in breast cancer. These 
epigenetic biomarkers show promise for distinguishing 
between malignant and benign disease or normal 
tissue [18­23] . Further, considering that no single methylated 
gene was detected in any breast cancer types, it is 
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of methylation in 
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Gene name Chr location Major functions Reference(s) 

ATM 
ABCB1 
APC 
BECN1 
BIN1 
BMP6 
BRCA1 

CMTM5 
CMTM3 
C/EBP啄 

CDKN1C 
CST6 
CDH3 
CDH13 
COX2 
CDO1 
CIDEA 
Cyclin D2 
DBC1 
DAPK 
DKK1 
DKK3 
DLC1 
ER
E鄄  cadherin 
EMILIN2 
EDN3 
EPHA5 
FLJ25161 
FBXW7 
FBLN2 
FOXC1 
GADD45a 
GSTP1 
HER4 
HIC1 
HIN1 
HMLH1 
HOXD11 
HOXA5 
IGF2 
IRF8 
KV1.3 
OPCML 
PCDH10 
P3H2 

11q22-q23 
7q21.12 
5q21-q22 
17q21 
2q14 
6p24-p23 
17q12-21 

14q11.2 
16q22.1 
8p11.2-p11.1 

11p15.5 
11q13 
16q22.1 
16q24.2-3 
1q25.2-q25.3 
5q23.2 
18p11.2 
12p13 
9q32-33 
9q34.1 
10q11.2 
11p15.2 
8p22 
6q25.1 
16q22.1 
18p11.3 
20q13.2-q13.3 
4q13.1 
3p14.1 
4q31.3 
3p25.1 
6p25 
1p31.2-p31.1 
11q13 
2q34 
17p13.3 
5q35-qter 
3p21.3 
2q31.1 
7p15-p14 
11p15.5 
16q24.1 
1p13.3 
11q25 
4q28.3 
3q28 

78% 
- 

36%-44% 
- 

18% 
- 

51% 

- 
18% 

- 

- 
48%-60% 

- 
33% 
35% 

- 
53% 
46% 
26 
- 

19% 
61.30% 

36% 
49% 
48% 
44% 
70% 
64% 
57% 
50% 
34% 
50% 
67% 
31% 

- 
- 

65% 
14% 
75% 
80% 

- 
36% 

42.30% 
91% 
43% 
42% 

- 
- 

44% 
- 

100% 
- 
- 

100% 
44% 

- 

85% 
- 
- 

35% 
- 
- 

86% 
- 

33% 
- 

27% 
71% 

22%-33% 
- 

38%-55% 
56% 
83% 

- 
75% 

- 
56% 

- 
67% 
44% 

- 
- 
- 
- 

100% 
- 
- 

66% 
- 

90% 
88% 
46% 

DNA repair, cell cycle regulator 
Multidrug resistance 
Cell polarity and chromosome segregation 
Autophage 
Apoptosis 
Regulate TGF茁 signaling pathway 
Cell cycle regulator, DNA repair, transcription 
regulation, apoptosis 
Apoptosis 
Apoptosis 
Cellular proliferation, differentiation, 
metabolism, inflammatory response 
Cell cycle regulator 
Inhibit cystein proteases activity 
Calcium鄄  dependent adhesion 
Cell adhesion, proliferation, metastasis 
Cyclooxygenase鄄  2; inflammation, mitogenesis 
Unknown 
Caspase鄄  independent cell death 
Cell cycle regulator 
Unknown 
Apoptosis 
Wnt pathway inhibitor 
Wnt pathway inhibitor 
Signal transduction, cell adhesion 
Estrogen receptor 
Cell adhesion, proliferation, metastasis 
Extracellular matrix glycoproteins 
Unknown 
Unknown 
Unknown 
Cell cycle control 
Cell motility and invasion 
Embryonic development 
Growth arrest and DNA repair 
Glutathione transferase activity 
Tyrosine kinase鄄  type cell surface receptor 
Transcription Factor 
Cell communication,signal transduction 
DNA repair 
Transcription factor, morphogenesis 
Transcription regulation 
Unknown 
Transcription factor 
Apoptosis 
Cell adhesion 
Apoptosis, metastasis, invasion 
A family of collagen prolyl hydroxylases 
required for proper collagen biosynthesis, 
folding, and assembly 

[60] 
[61,62] 
[63,64] 
[65] 
[66] 
[3] 
[67,68] 

[14] 
[10] 
[69] 

[70] 
[71,72] 
[62,73] 
[74] 
[75] 
[76] 
[77] 
[78] 
[77] 
[79] 
[80] 
[81] 
[15,82] 
[83-85] 
[75,86] 
[77] 
[87] 
[88] 
[89] 
[90] 
[77] 
[62] 
[91] 
[92] 
[93] 
[94] 
[95,96] 
[62] 
[89] 
[97] 
[98] 
[16] 
[99] 
[11] 
[89] 
[100] 

(To be continued) 
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P3H3 

PLCD1 

PCDHGB6 
PGR 
PPP2R2B 
p16/CDKN2A 
PTEN 

RARB 
RRDM2 
RASSF1A 
SIM1 
SALL1 
SFRP1 
SFRP2 
SFRP5 
SOX17 
SRBC 
SYK 
TIMP3 
TWIST 
TMS1 
TGM2 
TRIP10 
THRB 
WIF1 
XT3 
14鄄  3鄄  3啄 

necessary to use cancer­specific methylation marker 
panels to screen breast cancer [24] . For example, a  three­ 
methylated­gene panel (  ,  , and  ) 
was successfully used to detect malignant breast cancer 
cells in ductal fluids [25] . A four­methylated­gene panel 
(  ,  ,  , and  ) with a high 
level of sensitivity and specificity was used to detect 
malignant breast tissues [26]  as well. Compared to 
conventional ductal lavage cytology, a nine­methylated­ 
gene panel ( 

, and  ) was developed 
to double the sensitivity for breast cancer detection [27] . 

Cancer­specific methylation can also be extended to 
assess risk and predict prognosis for breast cancer. For 
example, frequently methylated  and  , as 
well as methylated  and  [28,29] , were 

associated with poor outcome  [28,29] . Recently, 
subtype­specific methylation markers were used to 
evaluate optional targeted treatments in breast cancer [30] . 
Using an array­based methylation assay, Holm  . [31] 

uncovered a subtype­ specific methylation pattern for 
distinguishing different breast tumor phenotypes, which 
will provide more detailed information for predicting 
breast cancer prognosis. 

Additionally, blood­based detection of cancer­specific 
methylated DNA in breast cancer has shown potential for 
early detection and prognostic prediction [32­35] . 

Radpour  .  [3]  found significant promoter 
methylation of seven genes [  , bridging integrator 1 
(  ), bone morphogenetic protein 6 (  ),  , 
cystatin 6 (  ),  , and  ] in serum and tumor 
tissues from patients with breast cancer by using 

Ting鄄  Xiu Xiang et al. Aberrant promoter methylation in breast cancer 

12q13 

3p22-p21.3 

5q31 
11q22 
5q32 
9p21 
10q23.3 

3p24 
1p36.21 
3p21.3 
6q16.3-q21 
16q12.1 
8p11-12 
4q31.3 
10q24.1 
8q11.23 
1p15 
9q22 
22q12.3 
7p21.2 
16p11.2-12.1 
20q12 
19p13.3 
3p24.2 
12q14.3 
3p21.3 
2p25.1 

26% 

52% 

62% 
- 

56%-65% 
0-67% 

22%-76% 

- 
- 

62% 
75% 
63% 

40%-75% 
77% 

71%-73% 
80.6% 
60% 
32% 
27% 

5.6%-32% 
41% 

44.4% 
- 

100% 
67% 
43% 

83%-96% 

31% 

78% 

75% 
- 
- 

33% 
- 

- 
- 

100% 
100% 
67% 

30%-100% 
100% 

90%-91% 
- 
- 

30% 
29% 

- 
77% 

5.7%-73.1% 
- 

40% 
80% 
75% 
50% 

-, not available. 

A family of collagen prolyl hydroxylases 
required for proper collagen biosynthesis, 
folding, and assembly 
Phospholipase activity, cell cycle arrest, 
metastasis, invasion 
Cell adhesion 
Progesterone receptor 
Cell growth and division control 
Cell cycle arrest 
Cell cycle arrest, apoptosis, cell adhesion, 
migration 
Tumor suppressive activity 
Apoptosis, metastasis 
Cell cycle control, apoptosis, DNA repair 
Unknown 
Unknown 
Wnt antagonist 
Wnt antagonist 
Wnt antagonist 
Growth inhibition, cell cycle arrest 
Unknown 
Growth inhibition, metastasis 
Metastasis, invasion 
Transcription regulator, EMT 
Apoptosis 
Cell migration 
Cell migration 
Thyroid hormone receptor 
Wnt signaling inhibitor 
Unknown 
Cell cycle arrest, metastasis 

Gene name Chr location Major functions Reference(s) 

[100] 

[13] 

[89] 
[101] 
[102] 
[103-108] 
[62,109] 

[110,111] 
[112] 
[113-115] 
[89] 
[77] 
[80,116,117] 
[80] 
[80,118] 
[119] 
[120] 
[121] 
[122] 
[95,123] 
[124] 
[125] 
[126] 
[127] 
[12] 
[89] 
[128,129] 

Reported percentage 
of methylation in 

breast tumors 

Reported percentage of 
methylation in breast 

cancer cell lines 
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MALDI­TOF mass spectroscopy. 
Together, these studies show that cancer specific 

methylation changes in tumor tissues, plasma, and other 
fluids can be used as tumor markers for risk assessment 
and early diagnosis of breast cancer. More effective and 
simplified approaches for detecting methylated genes are 
being developed to increase the sensitivity and specificity 
of early detection and prognosis of breast cancer [36­38] . 

Aberrant promoter methylation as therapeutic 
target for breast cancer 

Unlike genetic changes in cancers, gene silencing 
due to DNA methylation changes can be reversed by 
pharmacological demethylation. Thus, reactivating 
epigenetically silenced cancer genes and restoring their 
tumor suppression functions provide new insight for 
cancer therapy. Moreover, targeting epigenetic 
alterations also provides alternative ways for breast 
cancer preventative care, novel anticancer therapeutics, 
and drug investigation. 

DNA methyltransferase (DNMTs) inhibitors, 5­aza­ 
cytidine (5­Aza­CR) and 5­aza­2爷­deoxycytidine (5­Aza­ 
dC), are the first discovered epigenetic drugs. These 
compounds act by incorporating into DNA in place of the 
natural base, cytosine, during DNA replication, leading to 
covalent trapping of DNMTs [39] . This causes the depletion 
of active DNMTs and demethylation of genomic DNA. 
These reagents have already been approved by the US 
Food and Drug Administration (FDA) for treatment of a 
myelodysplastic syndrome (MDS), malignant 
mesothelioma, preleukemic disease, breast cancer, 
nasopharyngeal carcinoma (NPC) and other diseases [40­43] . 
Recently, Zebularine, a novel DNMT inhibitor with low 
toxicity and high selectivity for tumor cells, was reported 
to reactivate key genes silenced in breast cancer cell 
lines even at low doses [44] . In addition, other demethylation 
approaches, including DNMT inhibition via siRNA, 
ribozymes, and antisense oligonucleotides, have also 
been proposed but are still in their infancy. Some of 
these agents have been demonstrated to be promisingly 
effective in cell culture systems, animal models, and 
even clinical trials, whereas having little effect on normal 
cells [45] . These agents include MG98, an antisense 
oligonucleotide to DNA methyltransferase 1 [46,47] , and 
RG108 [48,49] , a novel small molecule that binds to the 
catalytic site of DNA methyltransferases. 

The combination of histone deacetylases inhibitors 
(HDACIs), such as TSA and phenylbutyrate [50] , with 
DNMT inhibitors is particularly valuable for cancer 
treatment. Furthermore, loss of estrogen receptor (ER) 
expression due to aberrant DNA methylation and histone 
modifications results in resistance to anti­estrogen 
therapy in breast cancer. Studies showed that 
combination of 5­azacytidine with TSA could induce 
re­expression of functional ER, thereby sensitizing ER琢  ­ 

negative breast cancer cells to tamoxifen therapy [51,52] . 
Combined with HDACIs, trastuzumab (Herceptin 誖  ), a 
humanized monoclonal anti­HER2 antibody, produced a 
synergistic effect on cell growth repression and apoptosis 
induction in breast cancer cells [53,54] . 

Furthermore, combinations of epigenetic drug 
treatments with conventional chemotherapeutic reagents 
or natural dietary ingredients could potentially work 
synergistically to increase therapeutic effects. A 
preclinical study has shown that 5­Aza­dC in combination 
with docetaxel, an anti­mitotic chemotherapeutic regent, 
could produce synergistic anti­cancer effects on breast 
cancer lines [55] . 5­Aza­dC combined with either amsacrine 
or idarubicin also showed promising efficacy. The green 
tea polyphenol, (­)­epigallocatechin­3­gallate (EGCG), 
can cause the chromatin structural remodelling of ERα 
promoter by altering histone acetylation and methylation 
status, thereby resulting in ER琢 reactivation. Combined 
with TSA, EGCG reactivated  multiple methylation­ 
silenced TSGs by directly and  indirectly inhibiting the 
enzymatic activities of DNMTs [56] . Dietary sulforaphane 
(SFN)  [57] , a histone deacetylase inhibitor, significantly 
inhibited the viability and proliferation of breast cancer 
cells but not normal cells  . 

Therefore, combined demethylation therapies may 
offer better therapeutic strategies for breast cancer. For 
example, clinical trials of trastuzumab combined with 
HDACI are in progress for locally advanced breast 
cancer [58] , and a phase II breast cancer trial combining 
valproic acid (VPA) with FEC100 (5­fluorouracil, 
epirubicin, and cyclophosphamide) is ongoing [59] . 

Conclusions 
In summary, substantial evidence demonstrates that 

epigenetic alterations, especially promoter CpG 
methylation of TSGs, play critical roles in breast 
tumorigenesis. Significant advances have been made for 
early detection biomarkers, risk assessment, prognostic 
prediction, and drug development in breast cancer. With 
the development of new epigenomic techniques and 
further investigations, a better perspective of the 
epigenetic profile of breast cancer will soon be revealed. 
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