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Novel CD123xCD33 bicistronic chimeric antigen receptor
(CAR)-T therapy has potential to reduce escape from
single-target CAR-T with no more hematotoxicity

Dear Editor,

Antigen escape is responsible for resistance [1] or
disease relapse [2] from single-target chimeric antigen
receptor (CAR)-T therapy. Dual-target CAR-T therapy has
the potential to overcome the escape problem. However,
the efficacy and safety assessment of dual-target CAR-T
therapy in treating acute myeloid leukemia (AML) need
further investigation. Tandem CAR-T therapy has been
widely used in research and clinic. However, clustering
of two connected single-chain variable fragments (scFvs)
[3] and the inappropriate conjugation distance [4] pose a
risk of damaging tandem CAR-T cells’ function. Moreover,
the bicistronic approach has been proven to be more effi-
cacious than tandem and pooled approaches in treating
multiple myeloma [5]. Both CD33 and CD123 are regarded
as ideal AML targets, and simultaneously targeting CD33
and CD123 can treat almost all AML patients. Therefore,
we developed a CD123XCD33 bicistronic CAR (123x33
biCAR) whose scFvs differed from any existing one to
improve the clinical efficacy and to explore its hematotoxi-
city (Supplementary Materials and Methods), as the only
published preclinical study of 123x33 biCAR, designed

Abbreviations: CAR, chimeric antigen receptor; AML, acute myeloid
leukemia; scFvs, single chain variable fragments; 123x33 biCAR,
CD123xCD33 bicistronic CAR; FCM, flowcytometry; ELISA,
enzyme-linked immunosorbent assay; IFN-y, interferon-y; TNF-«,
tumor necrosis factor-a; NSG, NOD/SCID/IL2Ry-/-; FDR, false
discovery rate; TGF-g, transforming growth factor-g3; PI3K-AKT-mTOR,
phosphatidylinositol 3-kinase/protein kinase B/mammalian target of
rapamycin; HSPCs, hematopoietic stem and progenitor cells;
scRNA-seq, single-cell RNA-sequencing; UMAP, uniform Manifold
Approximation and Projection; HSC, hematopoietic stem cell; MPP,
multipotent progenitors; MEP, megakaryocyte-erythroid progenitors;
GMP, granulocyte-monocyte progenitors; MLP, multi-lymphoid
progenitors; GSEA, gene set enrichment analysis; CFU, colony forming
units; BFU-E, burst-forming unit-erythroid; CFU-E, colony-forming
unit-erythroid; CFU-M, colony-forming unit- megakaryocyte; BLI,
Bioluminescent imaging.

with different scFvs and vectors, did not assess its safety
[6].

The 123x33 biCAR-T cell was designed to cope with the
antigen escape problem by expressing fully functional anti-
CD123 CAR (123CAR) and anti-CD33 CAR (33CAR) in one
T cell (Figure 1A). Two second-generation CARs contain-
ing 4-1BB/CD3-¢ intracellular signaling components were
linked by T2A sequence and cloned into a lentiviral back-
bone to obtain the bicistronic CAR vector (Figure 1B).
CD123 scFv and CD33 scFv were derived from clone
13C3 and clone HI33a, respectively, both of which were
established by our laboratory. Flow cytometry (FCM) anal-
ysis showed that both 123CAR and 33CAR were highly
expressed (above 40.0%) on T cell surface (Figure 1C).

Co-culture test showed that 123x33 biCAR-T cells
lysed not only CD123*CD33" Molml3 cells but also
CD123-CD33" Jurkat (Jurkat33) or CD123tCD33~ Jurkat
(Jurkat123) cells; in comparison, 123CAR-T or 33CAR-
T cells did not lyse Jurkat cells without corresponding
antigen; none of three types of CAR-T cells exhibited cyto-
toxicity toward CD123~CD33~K562 cells (Figure 1D, Sup-
plementary Figures S1-S2). Enzyme-linked immunosor-
bent assay (ELISA) test showed that 123x33 biCAR-T cells
released high levels of interferon-y (IFN-y) and tumor
necrosis factor-a (TNF-or) against Molm13, Jurkat123 and
Jurkat33 cell lines, which were hundreds to thousands
folds of that secreted by normal T cells (Supplementary
Figure S3). The above data indicated that 123x33 biCAR-
T cells have specific cytotoxicity against either CD123 or
CD33 in vitro.

Two xenograft mouse models were established to eval-
uate the in vivo efficacy of 123x33 biCAR-T cells. Firstly,
a Molm13-NOD/SCID/IL2Ry-/- (NSG) model was estab-
lished (Supplementary Figure S4) to mimic the most
common situations in AML patients, where CD123 and
CD33 are usually expressed concomitantly. The 123%33
biCAR-T performed as well as or better than single-
target CAR-T in eradicating Molml3 cells (Figure 1E,
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Structure and biological properties of 123x33 biCAR-T. (A) Antigen losing or switching leads to tumor escape, and 123x33

biCAR-T cells overcome this issue by specifically targeting both antigens simultaneously. (B) Schematic diagram of the 123x33 biCAR. 13C3
scFv was incorporated with the 4-1BB/CD3¢ signaling domain to generate a second-generation CAR. CD123 and CD33 CARs were linked via a

T2A sequence and cloned into a pCDH vector. (C) CAR expression was detected using FCM. Human recombinant CD123 and CD33 proteins

were used to detect the expression of each CAR. F(ab’), positive cells represent CAR" cells. (D) Representative histograms depicting the
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Supplementary Figure S5) and prolonging the Molm13-
NSG mice survival time (Figure 1F). In addition, an antigen
escape model was established by engrafting NSG mice with
a mixture of equal number of Jurkat123 and Jurkat33 cells
(Supplementary Figure S6). In this Jurkat hybrid model,
123%33 biCAR-T cells showed obvious superiority over
the two types of single-target CAR-T cells in suppress-
ing tumor burden (Figure 1G, Supplementary Figure S7)
and prolonging survival time (Figure 1H), substantiating
the advantage of dual-target CAR in antigen-loss situa-
tions. The two main possible reasons for the non-durable
anti-leukemia effect in vivo in our study are the rejec-
tion of mice against human T cells and limited amount
of CAR-T cells in vivo, which was lower than the number
reported in the other literature [7]. All things considered,
123%33 biCAR-T cells showed robust anti-AML effect and
promising anti-escape capacity in vivo.

The off-target cytotoxicity of 123CAR and 33CAR on
normal hematopoietic stem and progenitor cells (HSPCs)
has been controversial [7-9]. Herein, we first evaluated
the influence of 123%33 biCAR on hematopoiesis by sev-
eral methods. Cord blood-derived CD34% cells were co-
cultured with normal T or CAR-T cells in a 1:1 ratio for
24 h. Although enhanced cytokine secretion (Supplemen-
tary Figure S8) was observed in CAR-T groups, none of the
three types of CAR-T cells induced a significant reduction
in CD347 cell counts (Supplementary Figure S9) compared
to normal T cells, which indicated that CAR-T cells in this
study had no obvious specific cytotoxicity against CD34%
cells in vitro.

Additionally, single-cell RNA-sequencing (scCRNA-seq)
analysis was performed to better understand the effect of
CAR-T cells on HSPCs. Reduced dimension analysis using
Uniform Manifold Approximation and Projection (UMAP)
visualization showed 18 distinct clusters (Figure 1I). The
cell type was annotated in each cluster in the UMAP plot,
and five clusters located in the lower part of the plot were
identified as HSPCs: hematopoietic stem cells (HSCs),
multipotent progenitors (MPPs), megakaryocyte-erythroid
progenitors (MEPs), granulocyte-monocyte progenitors
(GMPs), and multi-lymphoid progenitors (MLPs). HSCs
and MPPs (Figure 11-J, Supplementary Figure S10) consti-
tuted the majority of HSPCs. The proportion of the HSC
subpopulation barely changed among the groups (12.8%,
10.8%, 11.5% and 11.7% in normal T, 123CAR-T, 33CAR-T
and 123x33 biCAR-T groups, respectively), while the MPP
subpopulation was reduced in CAR-T groups (12.7%, 4.9%,
7.6% and 5.9% in normal T, 123CAR-T, 33CAR-T and 123x33
biCAR-T groups, respectively) (Figure 1J). Therefore, CAR-
T cells reduced progenitor cells, but not stem cells, in
vitro.

The results of Gene Set Enrichment Analysis (GSEA)
revealed that the enrichment of quiescence, cell cycle,
G2M checkpoint and E2F target-related genes was
not altered in the HSC subpopulation by CAR-T cells
(Figure 1K, Supplementary Figure S11 Supplementary
Table S3). In addition, downregulation of the transforming
growth factor (TGF)-$ signaling pathway or enrichment
of the phosphatidylinositol 3-kinase/protein kinase
B/mammalian target of rapamycin (PI3K-AKT-mTOR)

proportion of the residual target cells Molm13, Jurkat33, Jurkat123 and K562 after co-culture with CAR-T cells at an E:T ratio of 1:1 for 24 h. (n
= 3; mean + SEM; one-way ANOVA with Dunnett’s multiple comparison test; ns, no significance; ***P < 0.001). (E) BLI of luciferase activity
in NSG mice on days 3 and 12 after inoculation of Molm13 cells (n = 6 mice per group, one from the 123x33 biCAR group died of anesthesia on
day 3). (F) Kaplan-Meier survival curves for the overall survival of the Molm13-inoculated mice (n = 11; log-rank test; *** P < 0.001). Survival
observation was conducted independently from BLI to avoid the negative effect of anesthetic injection on mice survival. (G) BLI of Jurkat123-
and Jurkat33-inoculated mice from the different treatment groups (n = 4 mice per group) on the indicated days. (H) Kaplan-Meier survival
curves for the overall survival of the Jurkat123- and Jurkat33-inoculated mice (n = 7 in each CAR-T group, and n = 6 in the normal T group;
log-rank test; *P < 0.05; ***P < 0.001). Survival observation was conducted independently from BLI to avoid the negative effect of anesthetic
injection on mice survival. (I-K) scRNA-seq analysis of residual CD34" cells treated with different T/CAR-T cells. (I) UMAP visualization
indicating 0 -17 clusters identified based on single-cell transcriptomes. Cell type was annotated on the corresponding cluster. Each dot
represents a single cell, and colors indicate cell clusters. (J) Stacked bar plots indicating the frequencies of defined cell types in different
samples. Hematopoietic cells are marked in various tones of red, and T cells are shown in different tones of blue. (K) Dot plot of GSEA results
of HSC in different CAR-T groups compared with HSC in normal T group based on the indicated gene sets. (L-M) CFU assay to determine
the colony-forming ability of residual CD34* cells of different groups. (L) Representative photos of colonies in different groups. (M)
Histogram showing the colony numbers of each group. (n = 3; mean + SEM; P values were calculated by two-way ANOVA with Dunnett’s
multiple comparison test and are shown in the table below the graphs; ns, no significance; *** P < 0.001).

Abbreviations: CAR, chimeric antigen receptor; 123x33 biCAR, CD123xCD?33 bicistronic CAR; scFvs, single chain variable fragments; FCM,
flowcytometry; E:T, effector cell: target cell; SEM, Standard Error of the Mean; Analysis of Variance (ANOVA); BLI, bioluminescent imaging;
NSG, nonobese diabetic/severe combined immunodeficiency /IL2Ry-/-; sScRNA-seq, single-cell RNA-sequencing; UMAP, uniform manifold
approximation and projection; Teff, effector T cells; Tex, exhausted T cells; Tpro, proliferating T cells; Tact, activated T cells; Tn/Tcm, naive
T/central memory T cells; GSEA, gene set enrichment analysis; HSC, hematopoietic stem cell; CFU, colony forming units; CFU-GEMM,
CFU-granulocyte, erythrocyte, macrophage, megakaryocyte; CFU-GM, CFU-granulocyte, macrophage; CFU-M, CFU- macrophage; CFU-G,
CFU-granulocyte; BFU-E, burst-forming unit-erythroid.
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signaling pathway in the HSC subpopulation treated with
CAR-T cells was not observed (Figure 1K, Supplementary
Figure SI1). Taken together, GSEA indicated that 123x33
biCAR-T cells did not significantly alter the stemness of
the HSC cluster.

Colony forming unit (CFU) assays showed similar
amount of hematopoietic colonies grown after three types
of CAR-T treatment, which were lower than that in
the normal T group (Figure 1L-M). It corroborated the
results of scRNA-seq and suggested that alive HSPCs
on exposure to CAR-T cells targeting CDI123 and/or
CD33 can differentiate into multiple lineages of blood
cells.

Most researchers hold that CD123 [8] or CD33 single-
target CAR-T therapy [9] has low toxicity against
hematopoiesis, while a minority hold the opposite
view [7]. Our results suggested that CAR-T therapies
targeting CD123 and/or CD33 were not myeloablative,
and scRNA-seq proved that HSCs were exempted and
thus probably retained much hematopoietic capacity.
Considering the CAR design was not peculiar to our study,
the novel scFvs might be the critical factor of the safety
profile we observed. Similar findings of Mardiros et al. [8]
support this hypothesis, and further studies are needed to
explore the mechanism via which scFvs impact the safety
of CAR-T cells. Moreover, the concomitant expression
of CD123 and CD33 on HSPCs [10] might be one reason
why 123%33 biCAR-T cells bring no additional hemato-
toxicity compared to CD123 or CD33 single-target CAR-T
cells.

In conclusion, we constructed a novel 123%33 biCAR-
T therapy that has great potential to reduce failure or
relapse from single-target CAR-T therapy and proved that
it has no more hematotoxicity than CD123 or CD33 single-
target CAR-T therapy, which provides more data reference
for the preclinical and clinical research of CAR-T therapy
targeting both CD123 and CD33.
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Additional supporting information can be found online
in the Supporting Information section at the end of this
article.
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