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LETTER TO TH E EDITOR

Advanced precision modeling reveals divergent responses of
hepatocellular carcinoma to combinatorial immunotherapy

Dear Editor
Combinatorial immunotherapy has provided patients

with advanced hepatocellular carcinoma (HCC) the poten-
tial for long-term survival. However, sustained responses
are seen only in a minority of patients [1]. Thus, there is
an unmet need for precision modeling to understand the
different responses and uncover predictive biomarkers for
treatment stratification.
Here, we investigated the responses of HCC to com-

binatorial immunotherapy in two genetic mouse models,
N90-CTNNB1OE;TP53KO andMycOE;TGFαOE mice, which
produce overexpression of an activated form of β-catenin
(CTNNB1) together with deletion of tumor protein 53
(TP53) or overexpression of the MYC oncogene together
with transforming growth factor α (TGFα), respectively.
Mutations in these pathways are frequently present in
human HCC. We found that the two models of HCC dis-
played remarkably distinct immune landscapes (Figure 1A,
Supplementary Figures S1-S2).Multi-locular tumors devel-
oped rapidly (less than 3 months) in both models
(Figure 1A, Supplementary Figure S1E). Remarkably, the
Myc-driven MycOE;TGFαOE tumors were immunologi-
cally “cold” and exhibited high proliferation rates, while
N90-CTNNB1OE;TP53KO tumors were immunologically
“hot” and showed elevated levels of vascularization and
immune cell infiltration (Supplementary Figures S1-S2).
Given the increased expression of vascular endothe-

lial growth factor (VEGF) and programmed cell death-
ligand 1 (PD-L1) in the N90-CTNNB1OE;TP53KO model
(Supplementary Figure S2), we investigated if there are
distinct responses of the two HCC models to combi-
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natorial immunotherapy. We administered lenvatinib, a
multi-tyrosine kinase inhibitor that inhibits both the
VEGF and tumor fibroblast growth factor receptor path-
ways together with anti-programmed cell death pro-
tein 1 (PD-1) antibodies to N90-CTNNB1OE;TP53KO or
MycOE;TGFαOE mice with fully established tumors (Sup-
plementary Figure S3A). Remarkably, the combinato-
rial immunotherapy significantly reduced the burden of
large tumors (≥ 2 mm-size) compared with IgG isotype
control in N90-CTNNB1OE;TP53KO animals, but not in
the MycOE;TGFαOE -driven model (Figure 1A, Supple-
mentary Figure S3). Thus, immunologically “hot” N90-
CTNNB1OE;TP53KO tumors responded more to combi-
natorial immunotherapy than immunologically “cold”
MycOE;TGFαOE tumors.
Next, we investigated the hepatic response to com-

binatorial immunotherapy in both models in detail by
immunofluorescence staining with the B cell marker
CD45R and theCD8+ Tmarker CD8A in combinationwith
Ki67 to assess proliferation and T and B cell activation
status. Strikingly, we found that immune cell clusters in
theN90-CTNNB1OE;TP53KO model contained tertiary lym-
phoid structures (TLSs) with B cell follicle and T cell zones
after combinatorial immunotherapy (Figure 1B; Supple-
mentary Figure S4). Notably, of the 93 TLSs observed
in our study, 88 were located in the tumor periphery,
while only 5 were present within the tumor itself (data
not shown). A large proportion of follicular B cells were
Ki67 positive (74.8% for treatment versus 27.8% for IgG
isotope control) in TLSs of CTNNB1OE;TP53KO mice, indi-
cating their high activation state (data not shown). In
contrast, the Myc/TGFα-driven tumors exhibited very
few TLSs (Figure 1B). Collectively, the less proliferative
N90-CTNNB1OE;TP53KO tumors were responsive to com-
binatorial immunotherapy, which was associated with an
augmented TLS response.
To better understand the distinct responses of the

two HCC models to combinatorial immunotherapy, we
employed NanoString technology to perform immune
transcriptomic profiling of N90-CTNNB1OE;TP53KO- and
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MycOE;TGFαOE-driven tumors with or without combina-
torial immunotherapy. Notably, the expression of genes
relevant to the TLS response was highly elevated in the
N90-CTNNB1OE;TP53KO-driven tumor model (Figure 1C,
Supplementary Figure S5).
We next focused on ten differentially expressed TLS

genes previously recognized as crucial for TLS forma-
tion, maturation, or both [2–8]. Among these genes are
B-cell lymphoma 6 (Bcl6), myocyte-specific enhancer
factor 2C (Mef2c), and chemokine [C-X-C motif] lig-
and 13 (Cxcl13) (Supplementary Figure S5D and S5F),
which are markers of TLS, while the seven other genes
have been implicated in TLS initiation. Next, we derived
TLS-maturation and TLS-initiation scores based on the
expression levels of these genes and found both to be
significantly higher in N90-CTNNB1OE;TP53−/− versus
MycOE;TGFαOE samples prior to and post combinatorial
immunotherapy (Figure 1D, Supplementary Figure S5E).
Thus, increased TLS initiation and maturation in the liv-
ers of N90-CTNNB1OE;TP53−/− mice were associated with
their higher sensitivity to combinatorial immunotherapy.
Among the TLS genes, only Bcl6, a master regulator for

germinal center maturation, and Cxcl13, a marker gene
for activated TLS [7], exhibited increased mRNA expres-
sion after combinatorial immunotherapy in the N90-
CTNNB1OE;TP53KO model (Supplementary Figure S5F).
When we evaluated how the activation of these two genes
relates to TLS activation, we found that Bcl6 was posi-
tively correlated with TLS activation, while the opposite
was true for Cd276 (Supplementary Figure S5G). Next, we

investigated human HCC gene expression data and dis-
covered a highly significant, positive correlation between
CTNNB1 and BCL6 (r = 0.527, P < 0.001) or MEF2C tran-
script levels (r = 0.504, P < 0.001) (Supplementary Figure
S5H), and a highly significant, positive correlation between
hypoxia- inducible factor (HIF)1A and BCL6 (r = 0.405,
P < 0.001) (Supplementary Figure S5I). HIF1A-binding
motif analysis suggested that HIF1A bound specifically to
the BCL6 promoter (Supplementary Figure S5J-K). Taken
together, these results demonstrate that TLS gene signa-
tures are distinguishing features of the immunologically
hot N90-CTNNB1OE;TP53−/− model.
Finally, we examined which gene ontology pathways

are significantly enriched in response to combinatorial
immunotherapy. Not surprisingly, we found that path-
ways such as adaptive and innate immune responses,
TNF signaling, IFN-γ and NF-κB signaling, among oth-
ers, were significantly enriched (Supplementary Figure
S6A). To assess if T-cell exhaustion and T-cell exclu-
sion associate with response and resistance to com-
binatorial immunotherapy, we derived gene sets to
compute T-cell exhaustion and T-cell exclusion scores.
When we analyzed features from our transcriptome data
that differentiate the two genetic models post combi-
natorial immunotherapy, we found that expression of
Cd276 and the T-cell exclusion gene signature were
enriched in the tumor microenvironment of the immuno-
logically cold MycOE;TGFαOE model compared to the
CTNNB1OE;TP53KO model (Figure 1C). However, all other
features, including the aforementioned TLS initiation and

F IGURE 1 Combinatorial immunotherapy has distinct effects in immunologically “hot” N90-CTNNB1OE;TP53−/− and “cold”
MycOE;TGFαOE models of HCC. (A) Left panel: Schematic N90-CTNNB1OE;TP53−/− and MycOE;TGFαOE mouse models with fully formed
HCC lesions were treated with anti-PD-1 plus lenvatinib. Anti-IgG isotype and buffer were used in control groups.Middle panel:
Representative images of liver tissues and H&E staining of sections after anti-PD-1 plus lenvatinib treatment or control in the two mouse
models as indicated. Right panel: Quantitation of tumor lesions with a diameter of ≥ 2 mm in the two mouse models with anti-PD-1 plus
lenvatinib treatment and control as indicated (8-10 mice per group). (B) Left panel: Immunofluorescence staining for immune cells and
proliferation markers CD45R, CD8A, Ki67 of a peritumor tertiary lymphoid structure (TLS) in the liver of a N90-CTNNB1OE;TP53−/− mouse.
Right panel: Quantification of TLS counts using immuno-staining data from liver sections of N90-CTNNB1OE;TP53−/− and MycOE;TGFαOE

mice. Black circles, IgG control; red squares, treatment with anti-PD-1 and Lenvantinib. (8-10 mice per group, one section each). Mean and
SEM are shown. Mann-Whitney test. **P < 0.01, ***P < 0.001. (C) Transcriptomic features in immunologically “hot” vs. “cold” tumor models.
Note that the immunologically “cold” MycOE;TGFαOE tumors are highly enriched for T cell exclusion features and exhibit high expression of
CD276, which is an immune checkpoint molecule that inhibits tumor antigen-specific immune responses. In contrast, immunologically “hot”
CTNNB1OE;TP53−/− tumors are highly enriched for all other features, including TLS initiation and maturation and MHC class I expression.
(D) TLS initiation scores derived from liver tumor transcriptome data were used to analyze TLS in the tumor models with or without
treatment as indicated. Adjusted P values are obtained from Benjamini-Hochberg correction of Mann-Whitney test. (E) Kaplan-Meier survival
analysis of the TCGA LIHC cohort using the TLS initiation score derived from our mouse data stratified into tertiles. The P value indicates a
significant difference between patients with high and low TLS initiation scores. (F) Schema summarizing the features of immunologically
“hot”’ and “cold” tumors which are exemplified by our two genetic precision models of HCC. Abbreviations: HCC, hepatocellular carcinoma;
PD-1, programmed cell death protein 1; IgG, immunoglobulin G (control); TLS, tertiary lymphoid structure; IF, immunofluorescence; PD-L1,
programmed cell death protein 1 ligand; MHC-I, major histocompatibility complex class 1; Treg, regulatory T cell; CTLA4, cytotoxic
T-lymphocyte-associated protein 4; HAVCR2, hepatitis A virus cellular receptor 2; LAG3, lymphocyte-activation gene 3; TIGIT, T cell
immunoreceptor with Ig and ITIM domains.
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maturation scores and the T-cell exhaustion scores, were
enriched in the CTNNB1OE;TP53KO model, both prior
to and post combinatorial immunotherapy (Figure 1C,
Supplementary Figure S6B).
Next, we performed disease-free survival analysis in

human HCC patients stratified by the TLS initiation
scores calculated using gene expression data. As shown
in Figure 1E, high TLS initiation scores were significantly
associated with longer disease-free survival. Conversely,
low T-cell exclusion scores predicted longer disease-free
survival (Supplementary Figure S6C). A model summa-
rizing our findings is shown in Figure 1F. In sum, liver
cancer driven by activation of the β-catenin pathway
and loss of p53 (the CTNNB1OE;TP53KO model) is an
example of immunologically “hot” HCC, which bene-
fits significantly from combinatorial immunotherapy. The
TLS-related features we derived from transcriptomics data
can predict the efficacy of combinatorial immunotherapy,
while immune exclusion predicts immunotherapy failure,
exemplified by the highly proliferative but treatment-
resistant MycOE;TGFαOE model. Thus, our study suggests
that future stratification based on TLS and T cell exclu-
sion features prior to treatment can predict the response
to combinatorial immunotherapy.
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