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Abstract
Natural killer (NK) cells are unique innate immune cells that mediate anti-
viral and anti-tumor responses. Thus, they might hold great potential for
cancer immunotherapy. NK cell adoptive immunotherapy in humans has shown
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modest efficacy. In particular, it has failed to demonstrate therapeutic efficiency
in the treatment of solid tumors, possibly due in part to the immunosuppres-
sive tumor microenvironment (TME), which reduces NK cell immunotherapy’s
efficiencies. It is known that immune checkpoints play a prominent role in cre-
ating an immunosuppressive TME, leading to NK cell exhaustion and tumor
immune escape. Therefore, NK cells must be reversed from their dysfunctional
status and increased in their effector roles in order to improve the efficiency of
cancer immunotherapy. Blockade of immune checkpoints can not only rescue
NK cells from exhaustion but also augment their robust anti-tumor activity. In
this review, we discussed immune checkpoint blockade strategies with a focus
on chimeric antigen receptor (CAR)-NK cells to redirect NK cells to cancer cells
in the treatment of solid tumors.

KEYWORDS
natural killer cell, immune checkpoint, chimeric antigen receptor-natural killer cell,
immunotherapy, tumor

1 BACKGROUND

Following cardiovascular disease, cancer is the second
cause of mortality worldwide [1]. As a result, several
treatment options have been developed to restrict disease
development, including surgery, chemotherapy, radiation,
targeted therapy, and immunotherapy. The relevance of
new cancer treatment approaches, such as immunother-
apy, has been recognized due to the negative effects of
traditional cancer treatment methods. Although cancers
use a variety of tactics to delay, alter or stop immune
responses, various strategies have been devised to improve
the immune response. Generally, cancer immunotherapy
is classified into passive and active approaches. In pas-
sive immunotherapy, the host’s immune response is not
stimulated directly. This approach involves the administra-
tion of ex vivo-generated cells ormolecules (tumor-specific
monoclonal antibodies (mAbs), recombinant cytokines,
and adoptive cell transfer) to patients. On the other hand,
active immunotherapy promotes the patient’s immune
response and leads to effector immunological responses
[2]. Active cancer immunotherapy includes Abs target-
ing immune checkpoints, oncolytic viruses, and vaccines
(such as peptide vaccines, DC vaccines, and allogeneic
whole cell vaccines) [2, 3].
A breakthrough in immunotherapy was achieved when

James P. Allison and Tasuku Honjo received the Nobel
Prize in Physiology or Medicine for their discovery
of new targets for cancer therapy. They discovered
two critical immune checkpoints, including the cyto-
toxic T-lymphocyte-associated protein (CTLA-4) and pro-
grammed cell death protein 1 (PD-1) as T cells brake [4]. By

inhibiting or blocking these checkpoints, they hoped that
T cells would be able to find cancer cells and kill them.
Natural killer (NK) cells are unique innate immune

cells that play crucial roles in anti-viral and anti-tumor
responses. This suggests that they might hold great
promise for cancer immunotherapy. NK cell adoptive
immunotherapy in humans has shown modest efficacy
[5]. It has failed to demonstrate therapeutic efficacy in
the treatment of solid tumors in particular [6, 7]. This is
due in part to the immunosuppressive tumor microenvi-
ronment (TME), which reduces NK cell immunotherapy’s
efficiencies. It is known that immune checkpoints play a
prominent role in creating an immunosuppressive TME,
leading to NK cell exhaustion and tumor immune escape.
Therefore, NK cells must be reversed from their dysfunc-
tional status and increased in their effector roles in order
to improve the efficiency of cancer immunotherapy. Block-
ade of immune checkpoints can not only rescue NK cells
from exhaustion but also augment their robust anti-tumor
activity [8].
Immune checkpoint inhibitors (ICIs), which are mAbs,

have been shown to be effective in clinical trials, defeat-
ing tumor immune evasion mechanisms [9]. While some
patients significantly respond to ICIs, most cancers are
either resistant at first or develop resistance after the initial
response. Therefore, treatment strategies must be devel-
oped to overcome ICI resistance and other approaches.
Activation of NK cells by Abs has been a hot research

topic in recent years. Because cancer is a multifactorial
disease, targeting two or more of the involved molecules
will aid in effective treatment. Bi/tri-specific Abs, which
encompass two or three target-binding units, have

 25233548, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cac2.12394 by C

ochraneC
hina, W

iley O
nline L

ibrary on [04/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

mailto:nafesm5@gmail.com
mailto:n_esmaeil@med.mui.ac.ir


GHAEDRAHMATI et al. 3

been explored as a therapeutic point of view in cancer
immunotherapy [10]. Bi and tri-specific natural killer cell
engagers (BiKEs and TriKEs) are bi/tri-specific Abs that
specifically target NK cell CD16 and tumor antigens. In
this setting, CD16 interaction causes NK cells to become
more cytotoxic and improves their anti-cancer actions [11,
12]. Therefore, there is no competition for binding to CD16
with the physiologic serum IgG compared to therapeutic
mAbs [13–15]. Due to their smaller size, BiKEs and TriKEs
may have better biodistribution than mAbs, particularly
in the treatment of solid tumors [16–18]. In addition, they
are non-immunogenic, have rapid clearance properties,
and can be engineered quickly to target known tumor
antigens.
Aptamers, which are short single-strand oligonu-

cleotides (single-stranded DNA or RNA), are emerging as
a promising molecular tool in targeted immunotherapy.
They encompass Ab-mimicking functions and can attach
to specific targets and regulate biological processes. They
are more stable than Abs, smaller, less immunogenic, and
can be produced without the use of biological systems [19,
20]. Aptamers are currently divided into three groups in
cancer immunotherapy: aptamers against immunoregula-
tory factors, aptamers against cancer-specific proteins, and
aptamers used as a drug delivery system for anti-cancer
agents [21].
In immune cell therapy, which is an adoptive

immunotherapy strategy, large numbers of autologous
or allogeneic immune cells are injected into a patient to
target cancer cells. In clinical trials, immune cell therapies
using non-genetically modified lymphokine-activated
killer cells (LAKs) and tumor-infiltrating lymphocytes
(TILs) showed relatively minor benefits [22]. Therefore,
engineered immune cells have been created to express
antigen-specific T cell receptors (TCRs) or chimeric anti-
gen receptors (CARs). Adoptive cell therapy (ACT) with
T cells expressing CARs has been widely used to redirect
autologous T cells’ specificity against lymphoid malignan-
cies. While CAR-T cell treatment has been demonstrated
to be highly beneficial in individuals with hematologic
malignancies, it has not been proven to be effective in
patients with solid tumors. Furthermore, large-scale usage
of CAR-T cells confronts various hurdles, including the
generation of autologous products from patients, which
takes several weeks to manufacture, and the inability to
produce clinical doses of CAR-T cells from T cell lym-
phopenia patients who have been highly pretreated [23].
In addition, graft-versus-host disease (GVHD) can occur
even in human leukocyte antigen (HLA)-matched patients
when an allogeneic source is used [24]. Antigen escape,
trafficking and tumor infiltration, immunosuppressive
TME, toxicities [25], and sub-optimal persistence and
potency are some of the other constraints [26]. Although

many innovative strategies to improve the function and to
overcome the toxicity of CAR-T cells are being explored
[27, 28], an alternative approach is to use other immune
cell types that are more efficient and safe, such as NK
cells. Figure 1 shows blockade of immune checkpoints to
improves anti-tumor efficacy of NK cells. In this review,
we discuss strategies for immune checkpoint blockade
with a focus on CAR-NK cells to redirect NK cells to
cancer cells in the treatment of solid tumors.

2 WHAT ARE NK CELLS?

In 1976, NK cells were defined as a defense against
pathogen invasion and malignant transformation [29].
These cells were initially thought to develop in the bone
marrow (BM), but recent evidence suggests that they can
also develop and mature in secondary lymphoid tissues,
including tonsils, lymph nodes (LNs), and spleen [30].
These lymphocytes are located in the blood, BM, LNs, skin,
gut, tonsils, liver, uterus (during pregnancy), and lungs
[31]. NK cells are licensed and avoid attacking normal self-
cells through a process known as education, which helps
them acquire functional maturation and self-tolerance
during development [32]. NK cells are CD3‒CD56+ lym-
phocytes in humans, whereas they are recognized in
C57BL/6 and SJL mice by the presence of NK1.1 and nat-
ural cytotoxicity receptor 1 (NCR1 or NKp46), as well as
CD49b but not CD3 [33] and in mice strains without NK1.1
expression (e.g., BALB/c mice), CD49b is used to iden-
tify NK cells [33, 34]. Human NK cells are further divided
depending on the density of CD56 on the cell surface,
which differ in phenotype, tissue placement, and immuno-
logical effects: CD56bright CD16dim NKcells (usually known
as immature NK cells), constitute about 5%-15% of total
peripheral blood (PB) NK cells, preferably reside in sec-
ondary lymphoid organs, such as LNs, produce cytokines
(especially interferon gamma (IFN-γ)) and play a key role
in immunomodulation; CD56dimCD16bright NK cells (also
known as mature and cytotoxic NK cells), make up about
90% of NK cells in PB and primarily mediate NK cells
immune function [35]. CD56 is not only a marker for NK
cells, but it also plays a significant role in their final dif-
ferentiation because its blockade by mAbs impedes the
transition from CD56bright to CD56dim, decreasing their
cytotoxic capacity [36]. Furthermore, almost all humanNK
cells express the activating receptor NKp46 [37, 38].
It is the balance of germline-encoded activating and

inhibitory receptors (without undergoing somatic recom-
bination) that controls whether NK cells are activated
or inhibited. The activation of NK cells is usually ini-
tiated in one of two ways: “missing-self” recognition
or “induced-self” recognition [39–42]. “Missing-self”
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4 GHAEDRAHMATI et al.

F IGURE 1 Blockade of immune checkpoints improves anti-tumor efficacy of NK cells. NK cell dysfunction is caused by
multiple factors in the tumor microenvironment (TME), as demonstrated by the upregulation of inhibitory checkpoint receptors and the
downregulation of activating receptors on tumor-infiltrating NK cells, resulting in the exhaustion of these cells. (A) Immune checkpoint
inhibitors (ICIs), (B) Bi and tri-specific natural killer cell engagers (BiKEs and TriKEs), (C) Aptamers, and (D) Chimeric antigen receptor
(CAR)-NK cells targeting immune checkpoints would restore NK cell antitumor activity. (The purple triangle and red circle on the tumor cell
indicate tumor antigens [in part B and C]). Abbreviations: Ab, antibody; iKIRs, inhibitory killer cell immunoglobulin-like receptors; NKG2A,
natural killer group 2 A; TIM-3, T cell immunoglobulin- and mucin-domain-containing molecule-3; TIGIT, T cell immunoreceptor with Ig
and ITIM domains; LAG-3, lymphocyte activation gene-3; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; HLA,
human leukocyte antigen; CAR, chimeric antigen receptor; CRISPR, clustered regularly interspaced short palindromic repeats; CIS,
cytokine-inducible SH2-containing protein; MHC-II, major histocompatibility complex class II; IL-15R, IL-15 receptor; NKG2D, natural killer
group 2 D.

recognition occurs when the target cells downregulate
or lose surface expression of major histocompatibility
complex class I (MHC-I) molecules, which is usually asso-
ciated with virally infected cells or cellular transformation
to evade T cell anti-tumor immunity. This induces NK cell
activation by reducing inhibitory signals from the MHC-I-
binding killer cell immunoglobulin-like receptors (KIRs)
or CD94/natural killer group 2 A (NKG2A) in human
and Ly49 receptors in mice. Subsequent studies have
revealed that the absence of MHC expression is neither
sufficient nor necessary for NK activation, and signaling
from activating receptors is also required. “Induced-self”
recognition occurs when stress or virus-related ligands on
target cells engage with germ-line activating receptors,
resulting in activating signals.
Leukocyte immunoglobin-like receptors (LIRs),

NKG2A, and some KIRs are inhibitory receptors on the
surface of NK cells that detect MHC-I [43–48]. KIRs,
which belong to the immunoglobulin (Ig) superfamily,
include inhibitory and activating receptors and detect
classical HLA-A, -B, and -C (HLA class Ia) in different
ways [43, 44, 46]. LIRs, also known as immunoglobin-
like transcripts (ILTs), are Ig superfamily members that
include both activating and inhibitory receptors [49–51].
From a total of 11 LIR members, 5 inhibitory receptors,

including LIRB1-5, have been identified [52]. Among
them, LIRB1 (ILT2) and LIRB2 (ILT4), in addition to
other ligands, recognize HAL-G as their main ligand,
resulting in immunological tolerance [50, 53]. NKG2A,
another inhibitory receptor, belongs to the C-type lectin
family of receptors and is a member of the CD94/NKG2
family of receptors, which includes A, B, C, D, E, F, and H
with activating or inhibitory potential. NKG2A pairs with
CD94 to form the NKG2A/CD94 receptor and recognizes
non-classical MHC-I molecule, HLA-E, as the ligand
[54]. In addition, emerging immune checkpoints such
as CTLA-4 and PD-1 that are from the B7-CD28 family
of receptors, T cell immunoreceptor with Ig and ITIM
domains (TIGIT), CD96, lymphocyte activation gene-3
(LAG-3), and T cell immunoglobulin-and mucin-domain-
containing molecule-3 (TIM-3) have been identified to
mediate NK cell dysfunction in the TME [55]. On the other
hand, dominant activating receptors of NK cells, including
NCRs (NKp46, NKp30, and NKp44), NKG2D, and DNAX
accessory molecule-1 (DNAM-1, also known as CD226),
recognize ligands on the surface of virus-infected or
malignant cells [56–58]. Coreceptors such as 2B4 (CD244),
NKp80, NTB-A, and CD59 are also expressed and begin
their function when co-engaged with other activating
receptors [57, 59].
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GHAEDRAHMATI et al. 5

F IGURE 2 Schematic diagram of types and functions of NK cells for killing tumors. It is the balance of germline-encoded activating and
inhibitory receptors that control whether NK cells are activated or inhibited. Abbreviations: NK, natural killer; ADCC, antigen-dependent
cell-mediated cytotoxicity; FasL, Fas ligand; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand; KIR, killer cell
immunoglobulin-like receptor; NKG2, natural killer group 2; DNAM-1, DNAX accessory molecule-1; LILR, leukocyte immunoglobulin-like
receptors; KLRG1, killer cell lectin like receptor G1; IFN-γ, interferon gamma; TNF-α, tumor necrosis factor-α.

The effector function of NK cells is similar to that of
CD8+ cytotoxic T cells, but NK cells do not require prior
antigen exposure or MHC class I limitation to carry out
their functions [60]. When exposed to their targets, NK
cells can cause cytotoxicity through a variety of mecha-
nisms, including expression of Fas ligand (FasL) and tumor
necrosis factor-related apoptosis-inducing ligand (TRAIL)
[61], the release of preformed cytotoxic granules containing
perforin and granzyme B [62–64], secretion of extracel-
lular vesicles, such as exosomes, with cytotoxic potential
[65], and participation in antigen-dependent cell-mediated
cytotoxicity (ADCC) by detecting IgG Abs attached to the
tumor cell surface by low-affinity Fc activating receptor
CD16 (or FcγRIII) [66]. NK cells are also polyfunctional
and can secrete multiple cytokines and chemokines, such
as IFN-γ, tumor necrosis factor-α (TNF-α), granulocyte-

macrophage colony-stimulating factor (GM-CSF), IL-5,
IL-10, IL-13, macrophage inflammatory protein (MIP)-1α,
MIP-1β, IL-8, and CCL5 (RANTES) that help modulate
other innate and adaptive immune cells function [67–69].
NK cells express cytokine receptors (including IL-2R, IL-
12R, IL-15R, IL-18R and IL-21R) that allow them to respond
to cytokines secreted by other cells [70]. Also, other recep-
tors, such as chemokine receptors (including CXCR1-4 and
CCR5) [71], and a diverse repertoire of pattern recognition
receptors (PRRs), such as TLRs, are expressed by NK cells
and play an important role in theirmigration and pathogen
recognition, respectively [72]. NK cells have recently been
revealed to have adaptive immune cell properties, espe-
cially memory-like responses [73–79]. Figure 2 shows a
schematic diagram of the types and functions of NK cells
for killing tumors.
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6 GHAEDRAHMATI et al.

In naive NK cells, ligation of individual activating recep-
tors (except for CD16) is insufficient to activate them;
cytokine exposure is necessary to preactivate them [80].
Cytokines such as IL-2, IL-15, IL-12, IL-18, IL-21, and
type I IFNs all play an important role in regulating NK
cell activation, maturation, and survival. Improved NK
cell performance has been achieved by administering
cytokines in vivo or pre-treating NK cells before adoptive
transfer [81]. In NK cells, IL-12 enhances signaling from
activating receptors [82]. IL-2 increases NKG2D expression
[83], whereas IL-15 is a powerful driver of NK cell differ-
entiation and proliferation, and is shown to improve NK
cell viability ex vivo when combined with IL-2 [84]. The
production of IFN-γ by NK cells was demonstrated to be
stimulated by IL-18, which also provides co-stimulatory
activation [85], while the maturation of NK cells with-
out promoting proliferation was enhanced by IL-21 [86].
The proinflammatory cytokine type I IFN potentially leads
to the pre-activation of NK cells, readying them for acti-
vation by activating receptors [87]. Combination of IL-15
with IL-12 and IL-18 results in significant biological alter-
ations and a status reminiscent of memory NK cells,
including improved function upon re-stimulation, hyper-
responsiveness to IL-2, increased IFN-γ production and
increased cytotoxicity [87–89].

3 TARGETING OF NK CELL-BASED
IMMUNE CHECKPOINTS BYmAbs

3.1 KIRs

Based on the number of extracellular Ig-like domains and
a cytoplasmic tail that dictate the function of themolecule,
KIRs are divided into two categories: activating KIRs
(aKIRs) and inhibitory KIRs (iKIRs). aKIRs have a shorter
cytoplasmic tail than iKIRs and lack an immunoreceptor
tyrosine-based inhibitory motif (ITIMs). Binding of a posi-
tively charged lysine residue to theKARAP/DAP12 adapter
molecule results in activated NK cell-mediated lysis [90,
91]. iKIRs contain two (KIR2DL) or three (KIR3DL) extra-
cellular Ig domains that confer specificity to HLAs. As a
result, they can detect changes in HLA molecules caused
by a viral infection or cancer [92]. iKIRs are upregulated
in tumor malignancy, while aKIRs are downregulated in
multiple tumors, such as breast cancer, lymphoma, and
non-small cell lung cancer (NSCLC) [93, 94]. These alter-
ations reduce NK cell activation and anti-cancer activity,
allowing the tumor to evade immunosurveillance. The
anti-tumor activity of NK cells may be induced by mAbs
that inhibit the interactions of iKIRs by blocking the signal-
ing pathway. Thus, several anti-KIRmAbs, including those
targeting KIR2DL1-3, have been evaluated in several clini-

cal trials for treating patients with leukemia, lymphoma,
multiple myeloma (MM) and some solid tumors [95].
Lirilumab (IPH2101, formerly called 1-7F9) is a human-
ized IgG4 mAb that blocks KIR2DL1, KIR2DL2, KIR2DL3,
KIR2DS1 and KIR2DS2 interacting with HLA-C [96].
However, lirilumab’s results in many clinical trials were
disappointing. Increasingly, clinical trials of combination
blocking strategies are being conducted.

3.2 CD94/NKG2A

Monalizumab is a humanized IgG4Ab that blocks NKG2A
binding to its HLA-E ligand, which is overexpressed
in tumor cells, as well as initiates an NK and CTL-
mediated immune response against cancer cells [97].
The findings of published studies from phase I clinical
trial NCT02459301 show that monalizumab prescribed in
patients with advanced gynecological cancers with min-
imal therapeutic toxicity is well tolerated [98]. In phase
II of the NCT02643550 clinical trial, monalizumab and
cetuximab, an epidermal growth factor receptor (EGFR)
inhibitor, were tested in patients with squamous cell car-
cinoma of the head and neck. According to preliminary
findings, the most common adverse effects were fatigue,
fever, and headache, while the objective response rate was
31% [99]. In clinical trials, NCT05061550, NCT03822351,
NCT03794544 and NCT03833440, the efficacy of monal-
izumab plus anti-PD-L1 blocking mAb (durvalumab) was
studied. In several trials, monalizumab and anti-PD-L1
have demonstrated to have a synergistic effect on cancers
that express HLA-E and PD-L1 [55].

3.3 TIM-3

TIM-3 is an inhibitory receptor of the TIM protein family
that can detect multiple ligands. The extracellular regions
of TIMs include a variable IgV domain that binds to the
highmobility group box 1 (HMGB1) and galactin-9 (Gal-9).
It also detects phosphatidylserine and carcinoembryonic
antigen-related cell adhesion molecule 1 (CEACAM-1)
[100, 101]. The intracellular domain of TIMs consists of 5
conserved tyrosine residues that interact with several com-
ponents of the TCR complex [102]. TIM-3 is considered a
marker for thematuration or activation ofNKcells because
it is expressed on almost all mature CD56dimCD16+ NK
cells. NK cell-mediated cytotoxicity can also be inhibited
by TIM-3 cross-linking. Upregulation of circulating and/or
tumor-infiltrating TIM-3+ NK cells has been elevated in
various types of malignant tumors such as gastric can-
cer, lung cancer, follicular B-cell non-Hodgkin lymphoma,
and colorectal cancer [103, 104]. Anti-TIM-3 Abs such
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as Sym023, LY3321367, MGB453, TSR-022, and BGB-A425
alone or in combination with anti-PD-1 or anti-LAG-3 Abs
in patients with advanced solid tumors (NCT02608268)
are being evaluated. Previous studies have shown that
increased TIM-3 expression on NK cells improves cyto-
toxicity and IFN-γ production [105, 106]. Therefore, due
to the use of TIM-3 blockade, there is a risk of decreased
NK cell-mediated cytolysis in pancreatic cancer cell lines,
so caution is required [107]. Anti-Gal-9 Abs, on the other
hand, reduce IFN-γ production in NK cells in response
to acute myeloid leukemia (AML) blast cells, complicat-
ing the effects of TIM-3 inhibition [108]. Therefore, more
studies need to be done to comprehend the role of TIM-
3 and its potential application in the management of NK
cell-mediated malignancy.

3.4 TIGIT and CD96

TIGIT and CD96 are inhibitory receptors that compete
for PVR (CD155) and Nectin-2 (CD112) binding with the
activating receptor DNAM-1 [100]. TIGIT and CD96 share
the same ligand and are composed of an immunorecep-
tor tyrosine tail (ITT) and an ITIM. ITT-like motifs play
an important role in inhibiting signals. TIGIT interac-
tion with CD155 induces phosphorylation via Fyn and
Lck, which recruits SHIP1 in T cells and reduces signal-
ing pathways in immune cells. Human NK cytotoxicity
and cytokine production are also prevented by this inter-
action [100]. TIGIT and its ligands are highly expressed
in a variety of cancers, and TIGIT expression has been
demonstrated to decrease the activity of NK and CD8+ T
cells in colorectal cancer patients as well as being linked
to the depletion of tumor-infiltrated NK cells in a mouse
model of colon cancer [109]. CD155 is highly expressed in
many types of tumor cells. TIGIT inhibition could help
to reverse NK cell exhaustion and restore efficient anti-
tumor immunity.Moreover, NK cells in TMEexpress lower
levels of PD1 and CTLA-4 in comparison to T cells. There-
fore, it has been suggested that PD-1 Ab treatment is less
effective on NK cells than anti-TIGIT blockade as a sup-
plemental treatment because it improves tumor clearance
and provides substantial immunity in tumor rechallenge
models [109]. PVR expression, on the other hand, has
been linked to a poor prognosis in many solid tumors,
including colon, breast, lung, and pancreatic cancers.
Accordingly, the PVR/TIGIT immune checkpoint axis has
been proposed as a novel target for cancer immunotherapy,
and several TIGIT-targeting clinical trials are currently
undergoing regulatory approval [110]. Tiragolumab, an
anti-TIGITAb, is currently being evaluated in combination
with atezolizumab (anti-PD-L1) for use in small cell lung
cancer (SCLC) (NCT04256421) and NSCLC (NCT04513925

and NCT03563716). In addition, two other anti-TIGIT Abs,
ociperlimab and domvanalimab, are being investigated in
combinationwith tislelizumab (anti-PD-1) in phase III and
zimberelimab (anti-PD-1) in phase II in solid malignan-
cies, respectively (NCT04746924 and NCT04791839). The
role of CD96 in NK cells is relatively less clear. One study
found that using CD96 Ab-mediated blockade increases
IFN-γ production by NK cells and controls cancer in a
mouse model of metastatic lung tumor [111–113]. How-
ever, the efficiency of CD96 Ab-mediated blockade on the
performance of NK cells and their effects on human can-
cer patients remains unknown. Therefore, further studies
are required to grasp its potential as a target molecule for
immunotherapy.

3.5 LAG-3

LAG-3 is a member of the Ig family of receptors with
inhibitory properties that are structurally similar to CD4;
however, it binds to MHC class II molecules with a higher
affinity than CD4. Fibrinogen-like protein 1 (FGL1) is a
recently identified ligand for LAG-3 [114]. LSECtin, amem-
ber of the DC-SIGN family, has also been described as a
potential ligand for LAG-3-expressing immune cells [115].
LAG-3 is expressed as an upregulated molecule on T and
NK cells but is also expressed on other immune cells,
including TILs, Treg cells, iNKT cells, B cells, and DCs
[116, 117]. High expression of LAG-3 has been indicated
in patients with breast cancer, gastric cancer, B-cell lym-
phoma, and lung cancer [118]. Because of LAG-3’s role
in T cell exhaustion and Treg inhibitory activity, target-
ing it in combination with anti-PD-1 has a synergistic
effect on T cell function restoration [119, 120]. However,
the precise role of LAG-3 in regulating NK cell function
has yet to be determined, demanding further investiga-
tion. Notably, Abs that block the LAG-3 pathway are not
able to induce human NK cell cytotoxicity, or even sol-
uble LAG-3, able to bind to MHC-II molecules, has no
effect on theNK cells’ ability to kill cancer cells [121]. How-
ever, targeting LAG-3 in immunotherapymay be beneficial
because of its effect on the effective function of T and NK
cells. Eftilagimod alpha (IMP321), a soluble version of the
recombinant LAG-3-Ig fusion protein, activates humanNK
cells to produce IFN-γ and TNF-α in vitro and has been
utilized as a safety aid for immunization against several
diseases and malignancies. IMP321 has been investigated
as a monotherapy for advanced renal cell carcinoma and
in combination with chemotherapy for metastatic breast
cancer in clinical trials [122, 123]. Relatlimab (BMS-986016)
is a new anti-LAG-3 blocking Ab that is currently being
evaluated in phase I clinical trials, such as solid tumors
and lymphomas (NCT03489369) or in combination with
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8 GHAEDRAHMATI et al.

other ICIs such as nivolumab and ipilimumab in advanced
cancer (NCT02488759) or either alone or combined with
PD-1 blockade, in various cancers, such as in patients with
advanced solid tumors (NCT05134948 and NCT01968109).

3.6 PD-1/PD-L1

PD-1 is expressed on various immune cells, including NK
cells. PD-1’s cognate ligands are PD-L1 (B7-H1) and PD-
L2 (B7-DC), which suppress immune cells such as T cells
andNK cells, resulting in immunological escape [124]. PD-
1 expression in mature NK cells, CD56dim NKG2A−KIR+
CD57+, is found in one-fourth of healthy people’s PB but
not inCD56bright NK cells [125]. PD-1 overexpression onNK
cells is related to NK cell dysfunction in cancer patients
with ovarian cancer, Kaposi sarcoma and MM, presum-
ably due to the presence of MHC-deficient tumor cells
[126–128]. In comparison to PD-1−NKcells, PD-1+NKcells
are functionally exhausted [129]. The blockade of PD-L1 on
hepatocellular carcinoma (HCC) cells did not significantly
increase the cytotoxicity of hepatic intrasinusoidal (HI)NK
cells. [130]. Also, in organoid culture, colorectal cancer
cells were effectively killed by primary human-activated
NK cells, regardless of PD-L1 expression [131]. On the other
hand, anti-PD-1 inhibition may induce the production of
cytokines like IFN-γ, which may indirectly boost NK cells
[59]. NK cell function is restored using anti-PD-1 mAbs.
In mice, tumor-infiltrating NK cells express PD-1, and PD-
1 blocking in NK cells promoted an anti-tumor immune
response [132]. In post-transplant lymphoproliferative dis-
ease (PTLD) patients, disruption of the PD-1 pathway
enhances IFN-γ release but has no impact on cytotoxicity,
demonstrating a relative dependence on the PD-1 pathway
and calling for additional research to determine the func-
tion of PD-1 inhibition in NK cells [133]. PD-1 blockade,
on the other hand, has been demonstrated to improve NK
cell-based anti-tumor responses. The safety and efficacy of
NK cells in combination with anti-PD-1 or PD-L1 are being
evaluated in clinical trials NCT03841110, NCT04847466
and NCT03439501. Anti-PD-L1 Abs such as atezolizumab,
avelumab, and durvalumab have been approved for use
as monotherapy or in combination with other ICIs in the
treatment of certain types of tumors. By overcoming T
cell exhaustion, the use of an anti-PD-L1 mAb promises
to increase the effectiveness of cancer treatment. How-
ever, the function of PD-L1 on NK cells and the anti-PD-L1
mAb effects on PD-L1+ NK cells remain unknown. One
study found that NK cell function in some tumors was
enhanced by induction of PD-L1 by AKT signaling on NK
cells and prevented cell exhaustion [134]. Also, another
study found that NK cells induce ADCC against PD-
L1-positive tumors in the presence of anti-PD-L1 mAbs,

indicating the efficacy of NK cell immunotherapy in tar-
geting cancers with high PD-L1 expression in combination
with anti-PD-L1 mAbs [135]. Avelumab is a fully human
IgG1 anti-PD-L1 Ab, with the ability to induce ADCC,
was evaluated in patients with non-resectable advanced
mesothelioma with or without PD-L1 expression in phase
I of the NCT01772004 clinical trial. The findings revealed
that avelumab was both effective and safe in clinical trials.
The results of theNCT01693562 clinical trial show that dur-
valumabhas clinical benefits in enhancingNKcell-specific
genes expression, which leads to NK cell priming of the
adaptive immunity response.

3.7 CD73

During hypoxia, apoptosis, and inflammatory response in
TME, the levels of ATP and adenosine as a derivative of
ATP are increased dramatically [136, 137]. CD39 and 5’-
nucleotidaseCD73,which are highly expressed on a variety
of cells, including T cells, tumor cells, stromal cells, Tregs,
and MDSCs, mediate ATP catabolism in the tumor envi-
ronment [138, 139]. Interestingly, NK cells in the TME
achieve the CD73 molecule and contribute to immune
suppression through adenosine production. In this state,
adenosine accumulation inhibits NK cell activation by
binding to A2ARs on the surface of NK cells [140]. There-
fore, CD73 inhibition andA2A receptor blocking have been
considered effective treatments to decrease tumor metas-
tasis and improve survival. Recently, anti-CD73 mAbs
(oleculumab, NZV930) alone or in combination with other
immunosuppressive drugs like anti-PD-1 and A2AR antag-
onists have been assessed in the treatment of different
solid tumors in several phase I/II studies (NCT03381274,
NCT03454451 and NCT03549000). However, the impact of
anti-CD73 treatment on NK cell function requires more
detailed studies.

3.8 CD47

CD47 was first identified on the leukocytes’ surface as a
part of the β3 integrin pathway. This molecule, which is
also known as integrin-associated protein (IAP), is a glyco-
protein that belongs to the Ig superfamily [141]. In addition
to integrins, CD47 interaction with thrombospondin-1
(TSP-1) and signal regulatory protein alpha (SIRPα) has
been indicated in previous studies [142, 143]. The inhibitory
function of CD47 is performed through engagement
with SIRPα and TSP-1 molecules, which is accompanied
with suppression of phagocytic cells, T cells, and NK
cells [144, 145]. Kim et al. [144] have shown that high
CD47-expressing head and neck squamous cell carcinoma
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GHAEDRAHMATI et al. 9

(HNSCC) cell lines induce lower NK cell cytotoxicity com-
pared to low-expressing cells. Findings of another study
have indicated the inhibitory effects of CD47 in NK cells
are independent of SIRPα [146]. In several phase I and II
clinical trials magrolimab (Hu5F9-G4), an anti-CD47 Ab,
is under investigation in various combinations with other
therapeutic agents such as cetuximab and atezolizumab
[55]. Nevertheless, there are still unknown aspects worth
investigating to deepen our understanding of the CD47
targeting effects on NK cells.

3.9 B7-H3 (CD276)

The B7 homolog 3 protein (B7-H3) is an immune check-
point that regulates the function of T and NK cells [147].
Overexpression of B7-H3 in several cancers has been indi-
cated and is related to tumor metastasis and evasion [148].
Upregulation of B7-H3 suppresses NK mediated cell lysis
[149]. The expression of this molecule by the tumor vas-
culature has also been indicated in previous studies [150].
B7-H3 has been proposed as a suitable target for can-
cer immunotherapy [148]. Several phase I/II clinical trials
have been conducted to assess the impact of anti-B7-H3
in combination with other mAbs in different cancers. To
improve the ADCC function of NK cells, B7-H3 binding
Fc-optimized humanized IgG1 mAb (enoblituzumab) has
currently been designed. It has been shown to suppress
tumor development in B7-H3 positive renal and bladder
carcinoma [151]. In an ongoing dose-escalating phase I
study, the safety and efficacy of a Fc-optimized human-
ized anti-B7-H3 mAb (MGA271) have been indicated [152].
The pharmacological characteristics of enoblituzumab and
also its safety, efficacy, and anti-tumor capacity are being
assessed in a phase I study (NCT02982941). The safety, anti-
tumor effect, and immunogenicity of enoblituzumab given
before radical prostatectomy are being evaluated in a phase
II study (NCT02923180). Table 1 shows clinical studies of
ICIs for the treatment of solid tumors.

4 BiKEs AND TriKEs

The GTB-4550 TriKE molecule (CD16a/IL-15/PD-L1) is
being investigated in preclinical studies for application in
the treatment of solid cancers. This TriKE specifically tar-
gets PD-L1+ tumors, and the IL-15 part of it enhances
NK cell activation and proliferation [153]. The preclinical
studies of CD16/B7-H3 BiKE [154] and CD16a/IL-15/B7-H3
TriKE [153] are also ongoing. Additionally, a humanized
TriKE (EGFR, CD16a, and PD-L1) with a shared light chain
has recently been developed [155]. Therefore, in addition
to activating NK cells and inhibiting inhibitory molecules,

this TriKE will likely impede the growth and survival of
tumor cells.

5 APTAMER

Passariello et al. [156] have investigated the impact of anti-
CTLA4 Ab (ipilimumab) and anti-EGFR CL4 nuclease-
resistant RNA-aptamer combinatorial treatment on the
anti-cancer function of immune cells, including NK cells.
They constructed the Fc region of ipilimumab mAb
with the amino-terminated CL4 aptamer and produced
an immunoconjugate (CL4-ipilimumab). CL4-ipilimumab
activated NK cells and induced IL-2 and IFN-γ production
by these cells more efficiently than the parental mAb used
alone or in combination with the CL4 aptamer, accord-
ing to their findings. Also, NK cells’ cytotoxic function
against SK-BR-3 tumor cells increased in the presence
of CL4-ipilimumab with a higher lactate dehydrogenase
(LDH) release by tumor cells. They have suggested that
expression of CTLA-4 affects the anti-tumor activity of NK
cells and CL4-ipilimumab restores it. In another study,
Zhang et al. [157] produced dual aptamer-equipped NK
cells (T-P NK cells) by using TLS11a aptamer targeting
HepG2 cells (hepatocellular carcinoma cell line) and PD-
L1-specific aptamer without genetic modification. They
observed significant cytotoxicity against HepG2 cells fol-
lowing treatment with T-P NK cells and hypothesized that
the ease of NK cell-target interaction likely boosts the
NK cells’ capacity to identify the target cells. Simultane-
ously, PD1-PD-L1 interaction blockade by PD-L1 aptamer
improves NK cell cytotoxicity. They tracked T-P NK cells
in tumor-bearing mice and found significant tumor pen-
etration and accumulation of T-P NK cells. Moreover,
increased IFN-γ production by T-P NK cells enhanced the
expression of PD-L1 on cancer cells. To improve NK cell
migration into the tumor environment, CP-bi-apt, a stable
CD16/PD-L1 bi-specific aptamer, has been designed. CP-
bi-apt has increased NK cell cytotoxicity and promoted NK
cell accumulation in the tumor site [158]. Bi-apts seem to be
effective in cancer immunotherapy for activating NK cells,
but more preclinical and trial research is needed before
aptamers can be used as immunotherapy drugs.

6 CAR-NK CELL THERAPY

While NK cell therapy has a lot of benefits, it also has a
number of drawbacks that restrict its effectiveness. NK
cells have a short lifespan without cytokine assistance,
lasting only one to two weeks. Ex vivo expansion and
activation of a limited number of cells is also required, and
NK cells may be vulnerable to the immunosuppressive
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10 GHAEDRAHMATI et al.

TABLE 1 Clinical studies of ICIs for the treatment of solid tumors

Immune
checkpoint

Clinical trials
identifier Phase Status Malignancy Combinations Ab/drug

Number
enrolled

KIRs NCT03203876 I Completed Advanced and/or
metastatic solid
tumors

Nivolumab
Ipilimumab

Lirilumab
(BMS-986015)

10

NCT01750580 I Completed Advanced tumor Ipilimumab Lirilumab
(BMS-986015)

22

NCT01714739 I/II Completed Advanced solid
tumors

Nivolumab
Ipilimumab

Lirilumab
(BMS-986015)

337

NCT03532451 I Active, not
recruiting

Bladder cancer Nivolumab Lirilumab 43

NCT03347123 I/II Terminated Advanced or
metastatic
malignancies

Epacadostat
Nivolumab
Ipilimumab

Lirilumab 11

NCT03341936 II Active, not
recruiting

Squamous cell
carcinoma of the
head and neck

Nivolumab Lirilumab 29

CD94/NKG2A NCT02459301 I Completed Gynecologic cancer Single Monalizumab
(IPH2201)

59

NCT02671435 I/II Completed Advanced solid
tumors

Durvalumab Monalizumab
(IPH2201)

383

NCT02643550 I/II Active, not
recruiting

Head and neck
neoplasms

Cetuximab
Anti-PD(L)1

Monalizumab
(IPH2201)

143

NCT05061550 II Recruiting Non-small cell
lung cancer

Durvalumab
Oleclumab
Chemotherapy

Monalizumab
(IPH2201)

140

NCT05221840 III Recruiting Non-small cell
lung cancer

Durvalumab
Oleclumab
Placebo

Monalizumab
(IPH2201)

999

NCT02331875 I/II Terminated Squamous cell
carcinoma of the
oral cavity

Standard Surgery
Postsurgical Adjuvant
Therapy

Monalizumab
(IPH2201)

3

NCT03822351 II Active, not
recruiting

Non-small cell
lung cancer

Durvalumab
Oleclumab

Monalizumab
(IPH2201)

189

NCT03833440 II Recruiting Non-small cell
lung cancer

Durvalumab
Oleclumab
Ceralasertib
Docetaxel

Monalizumab
(IPH2201)

120

NCT03088059 II Recruiting Squamous cell
carcinoma of the
head and neck

Afatinib
Palbociclib
Durvalumab
Niraparib

Monalizumab
(IPH2201)

340

TIM-3 NCT03744468 I/II Recruiting Advanced or
metastatic solid
tumors

Tislelizumab BGB-A425 162

NCT03680508 II Recruiting Liver cancer Dostarlimab
(TSR-042)

Cobolimab
(TSR-022)

42

NCT02608268 I/II Active, not
recruiting

Advanced
malignancies

Decitabine
Spartalizumab
(PDR001)

Sabatolimab
(MBG453)

252

NCT03961971 I Recruiting Glioblastoma
multiforme

Anti-PD-1
Stereotactic
radiosurgery

Sabatolimab
(MBG453)

15

(Continues)
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GHAEDRAHMATI et al. 11

TABLE 1 (Continued)

Immune
checkpoint

Clinical trials
identifier Phase Status Malignancy Combinations Ab/drug

Number
enrolled

NCT03099109 I Active, not
recruiting

Solid tumor Anti-PD-L1
(LY3300054)

LY3321367 275

NCT03489343 I Completed Solid tumor
malignancies or
lymphomas

Single Sym023 24

NCT02817633 I Recruiting Neoplasms Nivolumab
Docetaxel
Cisplatin
Carboplatin
Pemetrexed
TSR-033
TSR-042

TSR-022 369

TIGIT NCT02794571 I Recruiting Advanced/
metastatic
tumors

Atezolizumab
Carboplatin
Cisplatin
Pemetrexed
Paclitaxel
Etoposide
Capecitabine
Bevacizumab
Pembrolizumab

Tiragolumab 660

NCT04256421 III Active, not
recruiting

Small cell lung
cancer

Atezolizumab
Carboplatin
Etoposide
Placebo

Tiragolumab 490

NCT03119428 I Terminated Locally advanced
cancer

metastatic cancer

Nivolumab OMP-313M32 33

NCT03563716 II Active, not
recruiting

Non-small cell
lung cancer

Atezolizumab
Placebo

Tiragolumab 135

NCT03628677 I Active, not
recruiting

Solid Tumor Zimberelimab
(AB122)

Domvanalimab
(AB154)

74

NCT05211895 III Recruiting Non-small cell
lung cancer

Durvalumab
Placebo

Domvanalimab
(AB154)

860

LAG-3 NCT00349934 I Completed Metastatic breast
cancer

Paclitaxel Eftilagimod alpha
(IMP321)

33

NCT03252938 I Recruiting Solid Tumors Avelumab Eftilagimod alpha
(IMP321)

45

NCT04811027 II Recruiting Squamous cell
carcinoma of the
head and neck

Pembrolizumab Eftilagimod alpha
(IMP321)

154

NCT03625323 II Active, not
recruiting

Non-small cell
lung cancer

Squamous head
and neck cancer

Pembrolizumab Eftilagimod
alpha

189

NCT02614833 II Completed Metastatic breast
carcinoma

Paclitaxel
Placebo

Eftilagimod alpha 242

NCT02996110 II Active, not
recruiting

Advanced renal
cell carcinoma

Nivolumab
Ipilimumab
BMS-986205
BMS-813160

Relatlimab 155

(Continues)
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12 GHAEDRAHMATI et al.

TABLE 1 (Continued)

Immune
checkpoint

Clinical trials
identifier Phase Status Malignancy Combinations Ab/drug

Number
enrolled

NCT02750514 II Terminated Advanced
non-small cell
lung cancer

Nivolumab
Ipilimumab
Dasatinib
BMS-986205

Relatlimab 295

NCT02935634 II Active, not
recruiting

Advanced gastric
cancer

Nivolumab
Ipilimumab
BMS-986205
Rucaparib

Relatlimab 190

NCT04095208 II Recruiting Soft tissue sarcoma
adult

Advanced cancer

Nivolumab Relatlimab 67

NCT03489369 I Completed Solid tumor
Lymphoma

Single Sym022 15

NCT03044613 I Active, not
recruiting

Gastro/esophageal
cancer

Nivolumab
Carboplatin
Paclitaxel
Radiation

Relatlimab 32

NCT03623854 II Recruiting Advanced
chordoma

Nivolumab Relatlimab 20

NCT03459222 I/II Recruiting Solid tumor Nivolumab
Ipilimumab
BMS-986205

Relatlimab 255

NCT03493932 I Active, not
recruiting

Glioblastoma Nivolumab Relatlimab 20

NCT02658981 I Active, not
recruiting

Glioblastoma,
recurrent brain
neoplasm

Nivolumab or
urelumab

Relatlimab 63

NCT02966548 I Active, not
recruiting

Solid tumor Nivolumab Relatlimab 35

PD-1 NCT03590054 I Active, not
recruiting

Advanced solid
tumor

Abexinostat Pembrolizumab 42

NCT03815084 I Unknown Solid tumor DC-NK Cells Pembrolizumab 100
NCT03841110 I Recruiting Advanced solid

tumor
iPSC-derived NK
CellsNivolumab

Atezolizumab
Cyclophosphamide
Fludarabine
IL-2

Pembrolizumab
Nivolumab

37

NCT02660034 I Completed Solid tumor BGB-290
(PARP inhibitor)

Tislelizumab 229

NCT03707808 I Completed Solid tumor CD1c
(BDCA-1)+myeloid
DC

Ipilimumab
Avelumab

Nivolumab 9

NCT03958097 II Unknown Non-small cell
lung cancer

NK Cells PD-1 Ab 20

NCT04080804 II Recruiting Head and neck
squamous cell
carcinoma

Relatlimab
(anti-LAG-3 Ab)
Ipilimumab
(anti-CTLA-4 Ab)

Nivolumab 60

(Continues)
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GHAEDRAHMATI et al. 13

TABLE 1 (Continued)

Immune
checkpoint

Clinical trials
identifier Phase Status Malignancy Combinations Ab/drug

Number
enrolled

NCT02913313 I/II Recruiting Advanced solid
tumor

Ipilimumab
(anti-CTLA-4 Ab)
BMS-986207
(anti-TIGIT Ab)

Nivolumab 241

NCT04047862 I Recruiting Advanced solid
tumor

BGB-A1217
(anti-TIGIT Ab)
Pemetrexed
Paclitaxel
Nab paclitaxel
Carboplatin
Cisplatin
Etoposide
5fluorouracil
Oxaliplatin
Capecitabine

Tislelizumab 444

NCT02857166 I Completed Advanced solid
tumors

Single Toripalimab 24

NCT03374007 I Recruiting Solid tumor
lymphoma

Single
Geptanolimab(GB226)

72

NCT03468751 I Unknown Solid tumors Single HLX10 30
NCT03474640 I Active, not

recruiting
Advanced
malignancies

Single Toripalimab 198

NCT02715284 I Recruiting Advanced solid
tumors

Single Dostarlimab
(TSR-042)

740

PD-L1 NCT03518606 I/II Active, not
recruiting

Advanced solid
tumors

Tremelimumab
Metronomic
vinorelbine

Durvalumab 150

NCT03430466 II Terminated Breast cancer Tremelimumab
Fulvestrant

Durvalumab 1

NCT03084471 III Active, not
recruiting

Advanced solid
tumors

Tremelimumab Durvalumab 867

NCT03217747 I/II Active, not
recruiting

Advanced
malignancies

Utomilumab
PF-04518600
(Ivuxolimab)

Radiation Therapy

Avelumab 173

NCT02862275 I Recruiting Active hematologic
or solid tumor
malignancies

Single Atezolizumab 40

NCT03212404 I Recruiting Advanced cancers Single CK-301 500
NCT03588650 I Completed Advanced solid

tumors
Single HLX20 30

NCT03275597 I Active, not
recruiting

Non-small cell
lung cancer

Tremelimumab
Stereotactic body
radiotherapy

Durvalumab 17

CD73 NCT03381274 Ib/II Active, not
recruiting

Non-small cell
lung cancer

Osimertinib
AZD4635

Oleclumab 43

NCT03454451 I/Ib Active, not
recruiting

Advanced cancers Ciforadenant
Pembrolizumab

CPI-006 378

NCT03549000 I/Ib Active, not
recruiting

Advanced
malignancies

PDR001
NIR178

NZV930 127

(Continues)
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14 GHAEDRAHMATI et al.

TABLE 1 (Continued)

Immune
checkpoint

Clinical trials
identifier Phase Status Malignancy Combinations Ab/drug

Number
enrolled

CD47 NCT02953782 Ib/II Completed Solid tumors and
advanced
colorectal cancer

Cetuximab Magrolimab
(Hu5F9-G4)

78

NCT03869190 Ib/II Recruiting Urothelial
carcinoma

Atezolizumab
Enfortumab Vedotin
Niraparib

Hu5F9-G4
Tiragolumab
Sacituzumab
Govitecan
Tocilizumab

Cisplatin
Gemcitabine

Magrolimab
(Hu5F9-G4)

645

B7-H3 NCT02923180 II Active, not
recruiting

Localized
intermediate and
high-risk
prostate cancer

Single Enoblituzumab
(MGA271)

33

NCT02982941 I Completed Malignant solid
tumors

Single Enoblituzumab 25

Abbreviations: KIRs, killer cell immunoglobulin-like receptors; NKG2A, natural killer group 2 A; TIM-3, T cell immunoglobulin- and mucin-domain-containing
molecule-3; TIGIT, T cell immunoreceptor with Ig and ITIM domains; LAG-3, lymphocyte activation gene-3; PD-1, programmed cell death protein 1; PD-L1,
programmed death-ligand 1; NK, natural killer; iPSCs, induced pluripotent stem cells; PARP, poly (ADP-ribose) polymerase; Ab, antibody.

TME, which could limit their effector function and
trafficking. Exosome shedding, proteolytic cleavage,
internalization and degradation, decreased transcript
stability, decreased translation, differential glycosylation
and lipidation, increased intracellular retention, impaired
protein maturation and refolding, and affecting splicing
and alternative adenylation are all pathways by which
tumors reduce activating receptor ligand expression [159].
Tumors can potentially evade the function of NK cells
by upregulating MHC, which engages their inhibitory
receptors [160]. Engineering advancements have helped to
overcome some of these constraints. One of these, genetic
alterations of NK cells with CAR constructs, has received
a lot of attention recently.
CAR is an artificially modified fusion protein. It can

recognize antigens in the absence of MHC presentation,
unlike innate TCRs [161]. CAR-NK cells have extracellular
antigen recognition domain, hinge, transmembrane (TM)
and intracellular domains just like CAR-T cells. T cells
that have been genetically engineered to produce CAR can
directly detect the CAR-targeted antigen, enabling them
to activate, proliferate, release cytokines, and exhibit cyto-
toxicity against tumor cells that express the CAR-specific
antigen.
Single-chain variable fragments (scFvs), which include

variable sections of both the light and heavy chains of a
target-reactive Ig, are separated by a flexible linker in the

extracellular binding domain of a CAR [162]. Alterna-
tive binding domains, such as ligands (ICAM-1-specific
CAR-T cells built using the I domain derived from LFA-1)
[163], physiological receptors (chimeric PD-1 receptor)
[164], peptides (using NK1 as a targeting moiety for
generating MET-specific CAR) [165], nanobodies (single
domain antibodies (VHH)), [166] and DARPins (designed
ankyrin repeat proteins) are still being investigated in
preclinical studies [167]. These recognition sequences
establish CAR specificity and affinity for target antigens.
Evidence suggests that the antigen binding affinity and
stability of the construct are affected by the order of the
variable fragments and the length of the linker. Both
epitope location and abundance should be considered
while constructing scFv [168]. The CAR’s hinge domain
connects the extracellular domain to the TM domain,
providing it enough orientation and flexibility to bind to
tumor antigens and influence CAR-NK cell activity. The
size of the hinge area has been shown to affect the CAR-T
cell function. Longer hinges allow for more flexibility in
membrane-proximal antigens, whereas shorter hinges
suffice for membrane-distal antigens [169, 170]. According
to several studies, CAR-T cells with a shorter hinge region
had more anti-tumor efficacy [171, 172]. A TM domain is
located between the hinge and the intracellular signaling
domain, which is required for surface expression and
stability of the receptor. The structure of the intracellular
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GHAEDRAHMATI et al. 15

signaling domain, which consists of immunoreceptor
tyrosine-based activation motifs (ITAMs), determines the
intensity of the CAR-NK activation signal. The backbone
of all CAR generations is the same.
Based on the structure and composition of the

endodomain, the evolution of CARs during the last
three decades can be approximately divided into five
generations [173]. In the first generation of CARs, a
single CD3ζ intracellular domain was presented. Early
experiments of first-generation CAR-T cells demonstrated
low cytotoxicity and proliferation due to the lack of
co-stimulatory (e.g., CD27, CD28, OX40 [CD134], 4-1BB
[CD137]) and cytokine (e.g. IL-2) signaling [173, 174]. The
second generation of CARs was generated by adding
a costimulatory domain to the intracellular signaling
domain, such as parts of CD28 or 4-1BB, to increase T cell
proliferation and cytotoxicity [175–177]. A third intracellu-
lar signaling sequence with an additional co-stimulatory
domain, such as OX40 or 4-1BB, was added to the third
generation of CARs to improve on the second generation
[173]. In contrast to the second-generation CAR, there is
no consistent evidence that performance has increased
in the third-generation CAR. The CAR-mediated effector
functions can be dramatically influenced by the type of
co-stimulatory domain used. Co-activation of 4-1BB leads
to the formation of T memory cells, whereas co-activation
of CD28 leads to enhanced T cell activation and expansion
[178]. T cells redirected for universal cytokine-mediated
killing (TRUCKs), the fourth generation of CARs, are
based on the second generation, but they release trans-
genic cell products that are expressed either constitutively
or inducible when the CAR is activated to induce tumor
death [179, 180]. A fifth generation of CARs is currently
being investigated; these are based on the second gen-
eration of CARs but have a truncated cytoplasmic IL-2
receptor β (IL-2Rβ)-chain domain with a STAT3 binding
site, which effectively provides all three synergistic signals
needed for complete T cell activation and proliferation
[181]. SUPRA CAR, Tandem CAR, Dual CAR, split CAR,
and SynNotch CAR are among the newer generations of
CARs [182, 183].

6.1 CAR-NK cell advantages in tumor
immunotherapy

The use of allogeneic haploidentical NK cells in ACT
has been clinically proven to be safe, without the risk of
causing GVHD. Using NK cells, an increased graft-versus-
tumor (GvT) response has been seen after hematopoietic
stemcell transplantation (HSCT) forAML [184, 185]. T cells
have been proven to be less effective at driving CARs than
NK cells. CAR-expressing NK cells are deemed safer in

clinical application than CAR-T cells, as evidenced by the
results of many clinical trials, and NK cell immunother-
apy is a safe and practical therapeutic method [186]. In
some phase I/II trials, allogeneic NK cell administration
has been well tolerated and has not caused GVHD or other
severe unwanted events [187–189] if the infused product
is sufficiently depleted of T cells, indicating that NK cells
are general CAR drivers that are not restricted to autolo-
gous cells. Unlike CAR-T cells, CAR-NK cells have a short
lifespan in circulation; therefore, there is a low chance of
on-target/off-tumor damage to normal organs [190]. NK
cells also generate different cytokines from T cells. When
stimulated, they produce IFN-γ and GM-CSF, whereas
CAR-T cells produce proinflammatory cytokines such as
TNF-α, IL-1, and IL-6 [191, 192]. While their anti-cancer
activity is based on the CAR-specific mechanism, which
involves the identification of tumor-related antigens via
scFv, NK cells also eliminate malignant cells by detect-
ing a variety of ligands through their receptors like NCRs
(NKp46, NKp44, andNKp30), NKG2D, andDNAM-1 [193].
In addition, CD16 facilitates ADCCbyNK cells [194]. CAR-
modified NK cells are therefore capable of effectively elim-
inating heterogeneous tumors in which some tumor cells
do not express CAR-targeted antigens through both CAR-
dependent and NK cell receptor-dependent mechanisms.
TheCAR-NK cells do not need to bematched to the patient
and can be derived from autologous or allogeneic sources,
including PB [195], BM-derived hematopoietic progenitor
cells (HPCs) [196], induced pluripotent stem cells (iPSCs)
[197], human embryonic stem cells (hESCs) [198], umbil-
ical cord blood (UCB) [199], post-partum placenta [200],
NK cell lines (such as NK-92) [201] or memory-like NK
cells [87], each with its own advantages and disadvantages
(Figure 3). Compared to the manufacturing of autologous
CAR-T cells, the development of “off-the-shelf” allogenic
NK cells takes less time. Additionally, CAR-NK therapy
can be used to treat solid tumors more effectively because
of its lower expression of PD-1 [202]. The resistance of can-
cer stem cells (CSCs) to chemotherapy, radiotherapy, and
immunotherapy can lead to relapses and metastasis. So,
since CSCs are quiescent and express low levels of MHC-I,
NK cells can target and kill them by default [203, 204].

6.2 NK cell sources of CAR generation

Autologous NK cells activated by IL-2 were employed in
early trials of NK cell immunotherapy. Autologous NK
cell infusions in combination with IL-2 were examined
in other trials after high-dose chemotherapy conditioning
[205, 206]. However, this approach led to poor clinical out-
comes due to the inhibition of autologousNK cells because
ligands presented by self HLA molecules on tumor cells
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16 GHAEDRAHMATI et al.

F IGURE 3 The schematic diagram of the
various sources for CAR-NK cell production. (A)
NK cells from peripheral blood mononuclear cells
(PBMCs), umbilical cord blood (UCB), post-partum
placenta, and memory-like NK cells are used in NK
therapy. It is also possible to differentiate NK cells
from CD34+ hematopoietic progenitor cells (HPCs). It
has recently become more attractive to use induced
pluripotent stem cells (iPSCs) for NK cell products.
(B) Production of CAR-engineered NK cells by
delivery of CAR construct gene into NK cells and
NK-92 cell lines. (C) A variety of CAR-expressing
vectors can be used to genetically engineer stem cells,
and these cells can be differentiated into CAR-NK
cells. Abbreviations: NK, natural killer; CAR, chimeric
antigen receptor; iPSCs, induced pluripotent stem
cells; hESCs, human embryonic stem cells; SCs, stem
cells; pNK, peripheral blood NK.

bound to KIR on NK cells [205, 206]. Additionally, IL-2
induces the expansion of Tregs, which can inhibit NK cell
expansion indirectly by depriving them of IL-2 or directly
by inhibiting NK cell function in a transforming growth
factor (TGF)-β-dependent manner [207, 208]. Endogenous
NK cells may not retain sufficient cytotoxicity against can-
cer cells because of the overall immunosuppressive tumor
milieu with impaired functions [209]. Another aspect
contributing to this limitation could be the difficulty of
obtaining pure and enhanced expansion of autologous NK
cells from cancer patients. Furthermore, autologous NK
cells are vulnerable to the presence of resistant tumor cells,
allowing tumor cells that are resistant to autologous NK
cells to survive and develop [210]. Patients who received
NK cell infusions were heavily pretreated before their
cells were collected and used, which might have adversely
affected their function and expansion [211]. While it is also
possible that anti-KIR Abs may block KIR-HLA match-
ing in order to increase NK function [96], the transfer
of allogeneic or haploidentical NK cells with KIR ligand-
mismatch prevents this suppression due to the “missing
self” recognition of tumor cells [184]. Allogeneic NK cells
may also be less likely to be rejected by the recipient’s
alloreactive T cells.

6.2.1 PB-NK cells

The PB-NK cells are phenotypically mature and highly
functional. However, they need blood or leukapheresis

from a healthy person who is willing to donate. Even
though PB-NK cells are readily available, their low trans-
duction efficiency, coupled with poor expansion, limits
their application [212]. However, this source has certain
limitations. The process of selecting an appropriate allo-
geneic NK cell donor is time-consuming, whichmay cause
the patient’s treatment to be delayed. The number of
peripheral blood mononuclear cells (PBMCs) that can be
extracted and the proportion of NK cells contained in the
PBMCs vary considerably among donors, all of which can
have an impact on the amount of purified NK cells avail-
able for transplant. Furthermore, NK cell phenotypes and
functions differ between donors (depending on age, sex,
weight, and other factors), reducing consistency in the
expansion rate and final product of NK cells.

6.2.2 UCB-NK cells

Another interesting source of NK cells, UCB, has a number
of advantages, such as its ready availability “off-the-shelf”.
UCB collection is easy and harmless to the mother or
baby, and they are almost never infected with Epstein-
Barr Virus (EBV) or cytomegalovirus (CMV). UCB is easily
frozen [213]. The benefit of UCB banks is the ability to
select donors with certain HLA types and specific NK
receptor profiles. UCB also has fewer T cells than PB,
and these cells have a naive phenotype, lowering the
risk of GVHD from contaminated T cells infused into
patients via an NK cell product infusion [214]. The NK
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GHAEDRAHMATI et al. 17

cells derived from the UCB are younger and have a greater
potential for proliferating than those derived from the
PB [215]. By using feeder cells and cytokines, UCB-NK
cells can be expanded and genetically modified to express
CARs. Because of their higher proliferative capacity, NK
cells from this source are easier to engineer, as demon-
strated in the first reported clinical trial of CAR-NK cells
[216]. In UCB, NK cells comprise up to 30% of lympho-
cytes [217], with a higher proportion of CD56bright cells
and hence inferior cytotoxic capabilities [215, 217, 218].
UnexpandedUCB-derived NK cells have some limitations,
including availability in low numbers due to the UCB
unit’s small volume and immature function [217]. UCB-NK
cells express lower levels of certain adhesion molecules,
along with KIRs, CD16, perforin, and granzyme B, com-
pared to PB-NK cells, as well as higher levels of inhibitory
molecules, including NKG2A [219]. One study used Good
Manufacturing Practice (GMP)-grade K562-based artificial
antigen-presenting cells (aAPCs) that express membrane-
bound IL-21 and 4-1BB ligand to develop a GMP-compliant
procedure that reliably produces therapeutically relevant
amounts ofGMP-gradeNKcells fromaCBunit for the pur-
poses of adoptive immunotherapy [199]. When activated
and expanded ex vivo, CB-derived NK cells express the
full array of activating and inhibitory receptors, strongly
express eomesodermin (Eomes) and T-bet, two factors
needed to mature NK cells, and have cytotoxic properties
similar to PB-NK cells [220, 221]. However, unlike PBMCs,
CAR-NK cells produced fromUCBs are not homogeneous,
making standardisation challenging [222].

6.2.3 NK cell lines

In most clinical trials with CAR-NK cells, the NK-92 cell
line is used because it shows clinical benefits and has
minimal side effects, and it is the only one that has been
approved for clinical application [223, 224]. It demon-
strates unlimited proliferation in vitro and is less sensitive
to repeated freeze/thaw cycles [225]. These properties will
make it easier and cheaper to manufacture “off-the-shelf”
CAR-NK products for clinical use. Furthermore, they are
a genetically modifiable NK cell population. In addition,
NK-92 cells have higher transduction efficiency than pri-
mary NK cells [226, 227]. However, this cell line has some
limitations: neither CD16 (are hence unable to trigger
ADCC) nor NKp44 are expressed due to their tumor cell
line origin, they must be irradiated before infusion and
they can’t be expanded in vivo, owing to the lethal irradi-
ation required before their infusion [228], rendering them
unsuitable for CAR-NK cell therapy. Genetically modify-
ing NK-92 cells to express the high-affinity V158 variant
of the FcγRIIIa/CD16a (termed haNKTM) and endogenous,

intracellularly retained IL-2 helped overcome these cyto-
toxic limitations [224, 229]. NK-92 also lacks some KIRs,
with the exception of KIR2DL4 (CD158d), which may
promote GVHD [230–233]. A recent study has suggested
that the host PBMCs might show cytotoxicity against
CAR-transduced NK-92 cells [234]. Moreover, they are
EBV-positive and exhibit multiple cytogenetic abnormali-
ties similar to those of NK lymphoma [235].While repeated
infusions of irradiated NK-92 cells are possible and may be
utilized to overcome their short-term persistence, such an
approach is likely to result in the production of Abs and
cellular immunity against the allogeneic cell line, as well
as faster rejectionwith each infusion. Since IL-2 is essential
to the growth and survival of these cells in culture, it must
be accompanied by any additional stimulation factors [225,
236]. NK-92MI cells were created by genetically engineer-
ing NK-92 cells to produce soluble IL-2, thus eliminating
the need for exogenous IL-2. In addition to NK-92 cells,
other human cell lines have also been evaluated as alterna-
tives, such as NKL, KHYG-1, YTS or NKG [237]. Irradiation
reduces the anti-tumor potency of this product when com-
pared to NK cells from other sources, and it may not be
clinically relevant.

6.2.4 NK cells derived from stem cells

NK cell products derived from UCB stem cells, hESCs and
iPSCs are currently being tested in clinical trials. Because
ESCs are more difficult to obtain and their applications
raise ethical concerns, they are used less frequently than
CB stem cells and iPSCs. It is possible to obtain large
numbers of NK cells by differentiating them from CD34+
HPCs. This approach provides virtually unlimited num-
bers of homogeneous NK cells, as well as the advantage
of allowing their genetic manipulation over primary NK
cells. CD34+ HPCs can be isolated from BM, mobilized
PB, or UCB, expanded and then differentiated into mature
NK cells in a culture system using a cocktail of cytokines
[238]. As a result, a more homogeneous and well-defined
NK cell product can be produced. Although PB aphere-
sis after granulocyte colony-stimulating factor (G-CSF)
stimulation is a well-established alternative to extracting
CD34+ progenitors from BM, it may influence the NK
cell phenotype [239]. It was previously common to use
BM CD34+ cells for the generation of NK cells, but UCB
CD34+ cells have become more frequently used as UCB
is easier to obtain and contains higher levels of HSCs
[240–245]. In this way, various combinations of growth
factor and cytokine mixtures, BM stroma cells, and cul-
ture media with or without animal or human serum were
used in the different studies. oNKord, an allogeneic partial
HLA-matched NK cell product derived from UCB CD34+
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18 GHAEDRAHMATI et al.

progenitors, has been designated as an orphan medica-
tion by the European Medicines Agency (EMA) and the
Food and Drug Administration (FDA) for treating AML
patients who are not candidates for allogeneic stem cell
transplantation. CD56+CD3− NK cells produced from this
process are largely similar to PB-NK cells, expressing acti-
vating receptors, and exhibiting potent cytotoxicity against
leukemia cells in vitro and in vivo [246]. On the other hand,
it has been shown that while CD34+ cells from CB can be
employed to produce a homogeneous population of CD56+
NKcells on a large scale, they do not appear to be asmature
as PB-NK cells [238] and have little ADCC activity [247]
even after expansion, necessitating additional measures
to improve potency for clinical application. In addition,
the differentiation process is labor-intensive, requiring fre-
quently changing media. In order to develop clinically
applicable NK cell expansion protocols, shorter expan-
sion times and less operator involvement are likely to be
preferred.
PSCs, such as ESCs and iPSCs, have the ability to

self-renew while maintaining pluripotency and could pro-
vide limitless supplies for target cells [248]. It has been
established that clinical-scale NK cell generation can be
achieved using hESC or iPSC [198, 249, 250]. The use of
commonly available hESC/iPSC cell lines is often preferred
to the use of stem cells from BM biopsy, G-CSF mobiliza-
tion, or human embryos [251, 252]. To differentiate these
cell sources into NK cells, xenogeneic stromal feeder cell
lines [253] or human spin embryoid bodies (EBs) [197,
254, 255] are required, which eliminate xenogeneic cells
for more defined NK cell development conditions and can
therefore be scaled up clinically. hESC/iPSC were cen-
trifuged to form spin EBs [256], which gave rise to HPCs
expressing CD34 and CD45, which were then differenti-
ated into mature NK cells by using a specific cytokine
cocktail. The choice of target donor somatic cell type and
the reprograming protocol, which includes the nature and
combination of genes as well as themethod used to deliver
transcription factors into somatic cells, have an impact
on the pluripotency and differentiation abilities of repro-
gramed cells in iPS cells [257]. NK cells derived from
iPSC/hESC expressed common NK cell markers, such as
KIRs, CD16, NKp44, NKp46, NKG2D, and TRAIL, and
were cytotoxic against several hematological and solid
tumor cells in vitro [198, 249]. NK cells produced from
iPSCs or hESCs combine the advantages of PB-NKandNK-
92 cells, as they have a similar phenotype to PB-NK cells
and are a homogeneous population. NK cells derived from
the H9 hESC cell line had a lower allogeneic immuno-
logical response, but they had a more mature cytotoxic
profile than CB-NK cells [249]. In contrast to PB-NK cells,
iPSC-derived NK cells, similar to UCB-NK cells, have an
immature phenotype,with lowerKIR andCD16 expression

and higher NKG2A expression [197, 254, 258]. Because of
their unlimited proliferation capacity, iPSCs have emerged
as an attractive source of CAR-NK cells [259]. Using iPSCs
to produce NK cells allows for more gene modification,
repeat dosing, and the generation of standardized prod-
ucts, allowing for more successful treatment of refractory
solid tumors [260]. Another advantage of using iPSC-NK
products over iPSC-T cell therapies is that iPSC-NK prod-
ucts can be truly “off-the-shelf” because they don’t require
HLA matching between donors and patients.
There are still obstacles to overcome before iPSC-NK

cells can be safely employed to generate CAR-NK for
clinical usage. iPSC-derived cells are always capable of
malignant transformation and have the potential to be
immunogenic, causing effector cell death or even adverse
immunological reactions like cytokine release storms.
The 5-week biomanufacturing time for iPSC-NK cells, on
the other hand, could be a barrier to establishing and
maintaining iPSC-NK cell banks, especially if geneticmod-
ifications such as CARs are required. It would be useful to
shorten and streamline the production process.

6.2.5 Memory-like NK cells

Memory-like NK cells were first discovered as a result of
CMV infection. CMV was observed to cause the expan-
sion of an NK cell subpopulation with CD94/NKG2C
overexpression as well as decreased expression of
PD-1, TIGIT, and NKG2A [261, 262]. When activated,
CD56dim/CD16bright/CD94/NKG2Ccells showed enhanced
proliferation, degranulation, and elevated IFN-γ and TNF-
α production [263]. In addition to living longer in vivo,
CMV-induced adaptive memory NK cells can withstand
the suppressive effects of Tregs and MDSCs [264, 265].
Incubation of NK cells with IL-12, IL-15, and IL-18 for 16
hours stimulates the generation of memory-like NK cells
with abilities and features comparable to CMV-induced
cells [87]. On the other hand, IL-12 has been shown to
promote NKG2A expression and inhibit NK cell activation
[266]. Cytokine-induced memory-like NK cells demon-
strated an excellent safety profile, expanded in vivo, and
resulted in remission in 44 percent of evaluable patients
with AML in a phase I trial [89]. According to preclinical
research, inserting CAR into a memory-like NK cell
improves its survival and cytotoxicity [267].

6.2.6 Post-partum placenta

Placenta-derived cells contain a proportion of NK cell
progenitors with the ability to develop into NK cells dur-
ing the maturation and expansion stages. After a 21-day
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GHAEDRAHMATI et al. 19

NK culture of placenta-isolated NKs, an average of 1.2
× 109 NK cells with an 80% viability rate was obtained
[200]. Derived placental-NK cells are largely similar to
UCB-NK cells phenotypically and functionally. The FDA
has approved CYNK-001, an allogeneic “off-the-shelf” cell
therapy enriched for CD56+/CD3− NK cells generated
from human placental CD34+ cells, as an investigational
new drug (IND) for the treatment of glioblastoma (GBM).

6.2.7 CAR-engineered stem cells

A CAR can be expressed by transfecting stem cells with
the genetic sequence. It is a newly developed method
that allows stem cells to differentiate into CAR-NK cells
after being engineered. Stem and progenitor cells can be
cryopreserved and have better transduction effectiveness
than mature NK cells. Engineered stem cells could poten-
tially produce a cellular product that is “off-the-shelf,”
eliminating the necessity for a personalized, patient-
specific product. Performing gene engineering or gene
editing on a small number of stem cells could reduce
the amount of gene-engineering/editing materials, which
could be cost-limiting, and allow for the most efficient
gene engineering/editing, which could be passed down
to subsequent divisions and final cell products. There-
fore, there is no need to use viral vectors to transfect NK
cells, avoiding high cell mortality from viral infection and
uncontrollable variation of gene insertion and expression.
Furthermore, the advancement of stem cell-engineered
cellular therapy will create new opportunities for prod-
uct upscaling and banking. In addition, gene-engineering
technologies like clustered regularly interspaced short
palindromic repeats (CRISPR)/Cas9 can be employed to
boost the anti-cancer properties of CAR-engineered stem
cells. The genetic changes will be evident in differentiated
immune cells since these cells are non-differentiated [258,
268]. One study successfully introduced CD19-targeted
CARs into CD34+ progenitors followed by NK differen-
tiation. Gene transfer had no effect on hematopoietic
differentiation and cell proliferation when transduced at
1-2 copies/cell [269]. In media supplemented with stem
cell factor (SCF), bone morphogenetic protein 4 (BMP4),
and vascular endothelial growth factor (VEGF), genetically
engineered iPSCs can stably differentiate into HPCs. A
substantial number of highly homogeneous CAR-NK cells
may be produced for therapeutic usage after activation
using aAPCs and stimulation with IL-15, IL-7, SCF, and
FMS-like tyrosine kinase 3 ligand (FLT-3L) [197, 254, 258].
Only one CAR-engineered iPSC cell is required for this
approach to produce a large number of highly homoge-
neous CAR-NK cell products for therapeutic usage. Li et al.
[255] used a CAR genetic sequence to transduce iPSCs.

In the xenograft model of ovarian cancer, iPSC-derived
CAR-NK cells showed prolonged survival and better anti-
tumor efficacy than iPSC-derived CAR-modified T cells
and non-CAR-bearing immune cells. In another study,
researchers used zinc finger nuclease (ZFN) technology
to genetically modify human iPSCs to insert a cDNA
encoding an anti-EpCAM-CAR into the adeno-associated
virus integration site 1, a “safe harbour” for transgene
insertion into the human genome, and then differenti-
ated themodified iPSCs intoCAR-expressing iPSC-derived
NK (iNK) cells. The CAR-iNK cells’ lytic activity against
NK cell-resistant, EpCAM-positive cancer cells was vali-
dated in an in vitro cytotoxicity experiment but not against
EpCAM-positive normal cells, confirming the CAR-iNK
cells’ retained tolerability towards normal cells [270]. A
recent study found that anti-glypican 3 (GPC3) CAR-
modified NK/ILC cells made from iPSC had a strong
effect against tumors and helped people with ovarian can-
cer live longer without causing acute systemic toxicity
[271]. In a recent phase I trial, iPSC was employed for
an “off-the-shelf” CAR-NK product (called FT596) to treat
CD19-expressing B cell malignancies (NCT04245722). iPS
cell-derived NK cell products that have been genetically
modified are being tested in people with different types of
cancers (NCT03841110 and NCT04023071). In conclusion,
it is not clear currently,which source is optimal for creating
CAR-NK cells with the most potent activity.

6.3 CAR constructs in NK cells

Most CAR-NK cell research has so far relied on CAR con-
structs developed for CAR-T cells. Novel CAR constructs
for NK cells specifically have been developed. However,
diverse CAR constructs have various effects on cytotoxicity
and cytokine production in NK cells [272, 273]. T and NK
cells share signal domains such as CD3ζ and 4-1BB, but NK
cells lack some costimulatory domains (e.g., CD28) and the
CD8α TM domain. Both T and NK cells rely on CD3 for
signaling and activation [274]. Despite the fact that CD28
is one of the most commonly used costimulatory domains
in CAR-T cells [275], its role in NK cell function is less
clear [276]. Despite this, when it was combined with CD3ζ
in a second generation ErbB2-specific CAR-NK-92, it per-
formed better than a CD3ζ construct alone and was similar
to the 4-1BB-CD3ζ CAR against ErbB2-expressing tumor
cells [228]. Another study found that NK-92 cells trans-
duced with a CD19-CAR that expressed CD28-CD3ζ had
better cytotoxicity against CD19-positive targets than cells
that expressed a 4-1BB-CD3ζ-containing CAR [277]. Both
primary NK cells and CAR-NK cell lines use a CD8α hinge
region. CAR-NK cells also used other spacers, such as
CD28, IgG Fc domains, and DAP12 [278]. Some of the most
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commonly used CAR-NK TM parts have been adapted
from CD3ζ, CD8 and CD28, but others have been explored
as well (e.g., NKG2D, 2B4, DNAM-1). Currently, CD8α and
CD28-derived TM are prevalent in primary CAR-NK cells,
while CD28 is the preferred TM region in CAR-NK cell
lines [278].
It is critical to build optimized CAR constructs based

on NK cell-specific signal activation properties in order
to improve the activation and cytolytic capacities of NK
cells. Typically, CAR-NK cell studies use first-generation
CARs, which have a single signaling domain comprising
CD3ζ, FcεR1γ, or DAP-12 [279–281]. A second- and third-
generation CAR uses one or two costimulatory domains in
conjunction with CD3ζ to improve cytotoxicity. NK cell-
specific adaptor molecules such as DAP12 have ITAMs.
DAP10, as the NKG2D receptor’s adaptor protein, has
not ITAM and can enhance and stabilize NKG2D mem-
brane expression. According to one study, anti-CD19-CAR
construct incorporating the intracellular CD3ζ compo-
nent or DAP10 showed that the anti-CD19-ζ-CAR caused
more NK cell-mediated cytotoxicity than the anti-CD19-
DAP10-CAR [282]. DAP12 was found to be preferable to
CD3 as an intracellular domain for NKG2D-engineered
primary NK cells. In this study, anti-prostate stem cell
antigen (PSCA)-CAR-NK cells containing DAP12 showed
improved cytotoxicity, cytokine production, and tumor
eradication in a mouse model [280, 283]. Furthermore, as
compared to anti-CD5-CAR-NK cells createdwith a 4-1BB-
containing construct, anti-CD5-CAR-NK cells engineered
with a construct including the 2B4 intracellular domain
were observed to have greater anti-tumor activity [284].
In comparison to NK-92 cells transduced with the CD28-
containing CAR construct, anti-GPC3-CAR-NK-92 cells
engineered with a construct containing NK cell-associated
DNAM-1 and/or 2B4 costimulatory domains displayed
enhanced proliferative capacity, persistence, and cytotoxi-
city againstHCC cells. Themaximumcytolytic activitywas
seen in CAR-NK-92 cells that contained both the DNAM-
1 and 2B4 costimulatory domains [285]. To find the best
CAR design for NK cells, Li and colleagues used NK-92
cells to produce ten distinct anti-mesothelin CARs and
tested their impact on NK cell-mediated killing. According
to the reports, only three CARs (CAR4, CAR7, and CAR9)
with an NKG2D TM domain and a 2B4 co-stimulatory
domain showed the greatest improvement in anti-tumor
activity. The capacity of these NKG2D TM and 2B4 carry-
ing CARs to activate signaling by recruiting endogenous
DAP10 under the circumstances of mesothelinhigh A1847
activation could be one reason for their better performance
[255]. In an osteosarcoma xenograft mouse model, a recep-
tor called NKG2D-DAP10-CD3ζ, containing the NKG2D
ectodomain and intracellular DAP10 and CD3ζ costimu-
latory domains, has been shown to greatly augment the

activation and anti-tumor capacity of primary NK cells.
CAR-NK cells expressing the activating receptor NKG2D
were designed by Parihar and colleagues to target human
MDSCs. They demonstrated that NKG2D-CAR-NK cells
could efficiently reduce human MDSCs in vitro and in
a mouse xenograft model grafted with human neurob-
lastoma and MDSCs. Additionally, CAR-NK cells release
proinflammatory cytokines and chemokines that might
enhance the infiltration and function of subsequently
infused CAR-T cells in the mouse model. For solid tumors,
CAR-NK cells have been suggested to be combined with T
cell-based therapies [286]. A CAR construct against PD-1
using the NKG2D TM domain fused to 4-1BB and DAP10
found DAP10 to be superfluous, and the same construct
lacking DAP10 showed improved NK cell function [287].
Based on these results, it is evident that more studies are
needed to optimize NK cell-specific CAR constructs. In
addition, similar strategies can be used to design other NK
activating receptor-based CAR, with the advantage that a
single CAR could be used to attack several different types
of cancer.

6.4 Preclinical studies of CAR-NK cells
targeting immune checkpoints for the
treatment of solid tumors

6.4.1 PD-1

In the study of Guo et al. [287], different chimeric receptors
that mediate robust NK cell signaling have been designed
using NKG2D. The extracellular domain of the inhibitory
receptor PD-1 was used in these NKG2D signaling-
based chimeric receptors to counteract the immunological
escape mediated by PD-1 ligands in solid tumors. They
used the PD-1 ectodomain and NKG2D TM domain as a
backbone to rationally design four chimeric receptors by
TMprotein structuremodeling. PNBB, a chimeric receptor
that was constructed by fusing the human PD-1 extracel-
lular domain to the hinge region, TM and cytoplasmic
domains of human NKG2D and human 4-1BB cytoplasmic
domain, showed stable surface expression on NK-92 cells
and induced significant in vitro cytotoxicity against various
tumor cells. As a result, this strategy now offers a promis-
ing method for the rational design of NK cell-tailored
chimeric receptors with NKG2D signaling. One study cre-
ated a novel chimeric costimulatory converting receptor
(CCCR) by rationally combining the extracellular domain
of PD-1, the TM and cytoplasmic domains of NKG2D,
and the cytoplasmic domain of 4-1BB created based on
the study of Guo et al. [287]. This NK-tailored CCCR was
able to switch the negative PD-1 signal into an activat-
ing signal, reversing PD-1’s immune suppressive effects.
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When compared to untransduced NK-92 cells, the CCCR-
modified NK-92 (CCCR-NK-92) cells retained their typical
NK cell features and displayed enhanced anti-tumor activ-
ity against human lung cancer H1299 cells in vitro. The
rapid clearance of H1299 cells was due to the signifi-
cant gasdermin E (GSDME)-dependent pyroptosis caused
by CCCR-NK-92 cells. In a lung cancer xenograft model,
CCCR-NK-92 cells dramatically inhibited tumor growth.
Their results highlighted the promising immunotherapeu-
tic potential of usingNK-tailored CCCR-engineeredNK-92
cells for the treatment of human lung cancer [288]. Li
et al. [289] developed a structure-based rational design
approach and created a novel Dual Targeting Chimeric
Receptor (DTCR) PD1-DAP10/NKG2D, which consists of
the ectodomain of PD-1 fused to a key co-stimulatory
receptor DAP10, and subsequently harnessed the activat-
ing receptor NKG2D as the second recognition receptor,
to assess solid tumor cell killing capacity. Increased PD-
1 and NKG2D cell surface expression in NK-92 cells after
retroviral DTCR transduction promoted strong cytotox-
icity against human gastric cell SGC-7901. TNF-α and
TRAIL levels increased significantly after stimulation of
the chimeric receptor DTCR, which can cause apopto-
sis in SGC-7901 cells. DTCR-NK-92 cells had significant
anti-tumor activity in the solid tumor cell SGC-7901- bear-
ing mouse model. In another study, a CAR-NK-92 cell
line, with an IL-15Rα-sushi/IL-15 complex and a PD-1
signal inverter, was created and named SP (Sushi-IL15-
PD1). cDNA fragments of a CAR encoded IL-15Rα-sushi,
TM domain of CD8, signal transduction zone of 4-1BB,
and CD3ζ, 2A signal peptide, PD1 extracellular region,
and IL-15. They showed that CAR expression allowed
SP cells to proliferate independently of IL-2 and become
more resistant to nutrition-starvation-induced apoptosis.
Meanwhile, SP cells were more effective in pancreatic
ductal adenocarcinoma (PDAC) cell killing assays than
NK-92 in vitro and in vivo, and there was a positive cor-
relation between the killing capability of SP cells and
PD-L1 expression in pancreatic cancer cells. The adhesion,
responsiveness, degranulation efficiency, targeted delivery
of cytotoxic granule content, and cytotoxicity of SP cells
were considerably stronger compared to NK-92. Finally,
the SP cell line is a promising adoptive immunotherapy
cell line that could be useful as an adjuvant treatment for
pancreatic cancer, particularly in patients with high PD-
L1 expression [290]. In another study, CRISPR/Cas9 was
used to develop a highly efficient method for editing the
genome of human NK cells to knock out inhibitory sig-
naling molecules. Up to 90% of primary PB-NK cells were
efficiently edited by theirmethod. They showedhighly effi-
cient knockout of A disintegrin and metalloproteinase-17
(ADAM17) and PD1 (PDCD1) genes that have a func-
tional impact on NK cells and demonstrated that these

gene-edited NK cells have considerably improved activ-
ity, cytokine production, and cancer cell cytotoxicity. In
addition, they were able to expand cells to clinically rel-
evant numbers without losing their activity. They also
demonstrated that their CRISPR/Cas9method can be used
to efficiently knock in (KI) genes by delivering homol-
ogous recombination template DNA using recombinant
adeno-associated virus serotype 6 (rAAV6). Their platform
represents a feasible method for producing engineered pri-
mary NK cells as a universal cancer immunotherapy [291].
They suggested that this simple method for stable gene KI
provides a platform for the delivery of other relevant cargo,
including CARs and self-stimulating cytokine receptors.

6.4.2 PD-L1

Other researchers discovered that PD-L1 t-haNK cells
expressed PD-L1-targeting CAR (composed of an extracel-
lular scFv that binds to PD-L1, a TM domain, and a FcεRIγ
intracellular domain for downstream signaling) and CD16,
retained the expression of native NK receptors, and had
a high content of granzyme and perforin granules. They
showed that irradiated PD-L1 t-haNK cells could lyse 20 of
the 20 human cancer cell lines studied in vitro, including
triple-negative breast cancer (TNBC), lung, urogenital, and
stomach cancer cells. The cytotoxicity of PD-L1 t-haNK
cells was correlated to the PD-L1 expression of the tumor
targets and could be improved by pretreating the targets
with IFN-γ. It was found that irradiated PD-L1 t-haNK
cells inhibited the growth of engrafted TNBC, lung, and
bladder tumors in NSGmice. The combination of PD-L1 t-
haNK cells with N-803 (formerly ALT-803), an IL-15 super
agonist complexed with IL-15Rα−Sushi-Fc fusion protein
and anti-PD-1 Ab resulted in superior tumor growth con-
trol of engrafted oral cavity squamous carcinoma tumors
in C57BL/6 mice. Also, when cocultured with human
PBMCs, PD-L1 t-haNK cells lysed MDSCs preferentially
but not other immune cell types. This study provides a
rationale for using these cells in clinical trials [292]. haNKs
were engineered by Robbins et al. [293] to express a CAR
targeting PD-L1. This second-generation CAR included a
scFv derived from NANT-601, and an IgG1 mAb targeting
PD-L1, along with a CD8 hinge, a CD28 TM domain, and
an intracellular FcεR1γ signaling domain. They demon-
strated that haNKs engineered to express a PD-L1-CAR
killed a panel of human andmurine head and neck cancer
cells at low effector-to-target ratios in a PD-L1-dependent
fashion. Treatment of syngeneic tumors led to CD8 and
PD-L1-dependent tumor rejection or growth inhibition
and a reduction in myeloid cells endogenously express-
ing high levels of PD-L1. Also, treatment of xenograft
tumors resulted in PD-L1-dependent inhibition of tumor
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growth. In the PB of patients with head and neck cancer,
PD-L1-CAR-haNKs reduced levels of macrophages and
other myeloid cells endogenously expressing high PD-L1.
Therefore, clinical study of PD-L1-CAR-haNKs is recom-
mended. Another study developed experimental models
to investigate mechanisms of T cell escape and demon-
strated that resistance to T cell killing can be overcome
by adding NK cells engineered to express a CAR target-
ing PD-L1 developed in two previous studies [292, 293].
In engineeredmodels of tumor heterogeneity, PD-L1-CAR-
engineered NK cells (PD-L1 t-haNKs) inhibited the clonal
selection of T cell-resistant tumor cells seen with T cell
treatment alone in multiple models. T cell treatment of
heterogeneous cancer cell populations in vitro and in vivo
resulted in IFN-γ release and subsequent PD-L1 upregu-
lation on tumor cells that escaped T cell killing due to
defects in antigen processing and presentation, priming
escape cell populations for PD-L1 dependent killing by PD-
L1 t-haNKs. These findings shed light on the processes
underpinning the synergistic anti-cancer effectiveness of
T cell-based immunotherapy that result in IFN-γ produc-
tion, PD-L1 overexpression on T cell escape cells, and
the utilization of PD-L1-CAR-engineered NK cells to tar-
get and eradicate resistant tumor cell populations [294].
In another study, PD-L1-targeted CAR was generated and
introduced into T, NK, or NK-92 cells. They generated
a new atezolizumab-based scFv and combined it with a
standard second-generation CAR backbone comprised of
the IgG4 hinge region, CD28 TM and signaling portions,
and the CD3ζ signaling domain. PD-L1-CAR effector cells
degranulated and produced cytokines in response to PD-
L1high MDA-MB-231 cells but not to PD-L1low MCF-7 cells.
However, in long-term killing assays, both MDA-MB-231
and MCF-7 cells have been killed by the PD-L1-CAR cells,
but with a delay in the case of PD-L1low MCF-7 cells.
Notably, the coculture ofMCF-7 cellswith activated PD-L1-
CAR cells led to bystander induction of PD-L1 expression
on MCF-7 cells and to the unique self-amplifying effect of
the PD-L1-CAR cells. In tumor xenograft models, PD-L1-
CAR-T cellswere active not only againstMDA-MD-231 and
MCF-7-PD-L1, but also against MCF-7-pLVX (PD-L1low/−)
cells. Significantly, PD-L1-CAR cells exhibited potent cyto-
toxic effects against non-malignantMCF-10A, HMEC, and
BM-MSC cells, but not against HEK293T cells that initially
did not express PD-L1 and did not respond to the stim-
ulation. Finally, they discovered that HER-2-CAR-T cells
stimulate expression of PD-L1 on MCF-7 cells and hence
accelerate the functionality of PD-L1-CAR-T cells when
used in combination [295].
Combining genetically engineered immune cells with

ICIs is an intriguing strategy. A number of studies have
shown that co-administration of PD-1/PD-L1 blockers with
CAR-T cell therapy enhances anti-tumor activity and pre-

vents T cell exhaustion in preclinical models [296] and
patients receiving mesothelin-based CAR-T cell therapy
[297]. CAR-T cells were further engineered to produce
and secrete an anti-PD-1 scFv for targeting and boosting
CAR-T cell activity in order to reduce the systemic effects
of ICIs therapy [298]. Cherkassky et al. [299] success-
fully co-transduced anti-MSLN-CAR-T cells with vectors
expressing shRNAs targeting PD-1 genes. As a result of
cotransduction with PD-1 shRNAs and subsequent down-
regulation of PD-1 intrinsic levels, CAR-T cells were able to
further expand and kill MSLN/PD-L1-positive cancer cells.
Reduced N-linked glycosylation of PD-1 may reduce PD-1
expression and relieve its inhibitory effects on CAR-T cells.
Therefore, a preclinical investigation using an adenine
base editor (ABE) to decrease PD-1 suppression by chang-
ing the glycosylated residue in CAR-T cells downregulated
the expression of PD-1 in CAR-T cells and improved cyto-
toxic functions in vitro and in vivo [300]. These strategies
can also be used for CAR-NK cells.

6.4.3 B7-H3 (CD276)

The B7-H3-CAR was generated by Grote et al. [301] by
conjugating a B7-H3 clone m851-derived scFv on a second-
generation CAR backbone incorporating a CD8 hinge
domain, a CD28 TM domain and the cytoplasmic CD28
co-stimulatory as well as CD3ζ signaling domains. NK-92
cells engineered with B7-H3-CAR could eliminate neu-
roblastoma (NB) cells in vitro specifically and long-term
while sparing B7-H3-negative cancer cells. In addition,
B7-H3-CAR-NK-92 cells demonstrated enhanced cytotox-
icity in a 3D NB spheroid model recapitulating in vivo
morphology as well as cell connectivity, polarity, gene
expression, and tissue architecture, thus bridging the gap
between in vitro and in vivo studies. A multitude of NK
effector molecules were produced by B7-H3-CAR-NK-92
cells as well as pro-inflammatory cytokines that stimu-
lated the immune system. A stable surface expression of
B7-H3-CAR and cytotoxic effector function was observed
for more than six months. Grote et al. [302] also used
these CAR-NK-92 cells that target B7-H3, which is abun-
dantly expressed in melanoma, and tested their effectivity
in vitro in the presence of low pH, hypoxia, and other
features of the TME that affect anti-tumor responses. Addi-
tionally, CRISPR/Cas9-induced disruption of NKG2A was
tested for its potential to enhance the anti-tumor effect of
NK-92. These B7-H3-CAR-NK-92 cells had the ability to
cytolyze melanoma cell lines while being able to overcome
the immunosuppressive effects typically exerted by TME.
Cytotoxicity of CAR-NK-92 cells was not further improved
by knocking out NKG2A. This study concluded that B7-
H3-CAR-NK-92 cells are a promising cellular product for
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treating melanoma and beyond due to the cytotoxic prop-
erties of CARs targeting B7-H3 and the capabilities of an
“off-the-shelf” NK-92 cell line unaffected by many neg-
ative factors associated with the TME. To improve NK
cell functions, one study generated NK-92MI cells carrying
anti-B7-H3-CAR by lentiviral transduction. The anti-B7-
H3-CAR was comprised of an anti-B7-H3 scFv derived
from 8H9 Ab, followed by the CD8 TM region, the intra-
cellular domains of 4-1BB and CD3ζ. The expression of
anti-B7-H3-CAR drastically enhanced the cytotoxicity of
NK-92MI cells against B7-H3-positive tumor cells. Perforin
and granzyme B secretions, as well as CD107a expression,
were significantly increased in anti-B7-H3-CAR-NK-92MI
cells. Furthermore, anti-B7-H3-CAR-NK-92MI cells effi-
ciently inhibited tumor growth in mouse xenografts of
NSCLC and significantly increased mouse survival days
when compared to unmodified NK-92MI cells [303].

6.4.4 HLA-G

Another study established a novel CAR strategy com-
prised of the HLA-G scFv, TM and cytosolic domains of
KIR2DS4, the P2A (porcine teschovirus-1 2A) sequence,
the full-length DAP12 sequence, and inducible caspase 9
(iC9) (FK506-binding protein 12 fused to caspase-9). HLA-
G-CAR-transduced NK cells showed effective cytolysis of
breast, brain, pancreatic, and ovarian cancer cells in vitro,
aswell as decreased xenograft tumor growthwith extended
median survival in orthotopic mouse models. In tumor
coculture assays, the anti-HLA-G scFv moiety increases
Syk/Zap70 activation of NK cells, implying a reversal of
the HLA-G-mediated immunosuppression and therefore,
restoration of nativeNK cytolytic functions. Tumor expres-
sion of HLA-G can be further promoted using low-dose
chemotherapy, which when combined with anti-HLA-G-
CAR-NK, leads to extensive tumor ablation both in vitro
and in vivo. This upregulation of tumor HLA-G involves
the inhibition of DNA methyltransferase 1 (DNMT1) and
demethylation of transporters associated with antigen pro-
cessing 1 promoter (TAP-1) to trigger the translocation of
HLA-G [304].

6.4.5 Cytokine-induced SH2-containing
protein (CIS)

Another study developed a strategy that couples tar-
geting of the CIS protein, a major negative regulator
of interleukin IL-15 signaling, by CRISPR/Cas9 gene
editing with fourth generation ‘armored’ CAR encoded
iC9.CAR19.CD28-zeta-2A-IL-15 in CB-derived NK cells.
This combined strategy boosted NK cell effector function

via enhancing the Akt/mTORC1 axis and c-MYC signal-
ing and led to increased aerobic glycolysis. When tested
in a lymphoma mouse model, this combined approach
enhanced NK cell anti-tumor activity more than either
alteration alone, eliminating lymphoma xenografts with
no signs of any measurable toxicity. They concluded that
targeting a cytokine checkpoint further improves the anti-
tumor activity of IL-15 secreting armored CAR-NK cells
by enhancing their metabolic fitness and anti-tumor activ-
ity. This combined approach could pave the way for
the next generation of cancer immunotherapy using NK
cells [305]. This strategy could also be used against solid
tumors.

6.5 Clinical studies of CAR-NK cells
targeting immune checkpoints for the
treatment of solid tumors

Because pre-clinical data support the potential therapeu-
tic benefits of CAR-NK-92 and PD-L1 t-haNK cell therapy,
these novel cell therapies have a strong rationale for clin-
ical application. A phase I clinical trial (NCT03656705)
is being conducted to evaluate the safety and effects of
CCCR-modified NK-92 (CCCR-NK-92) infusion with a
starting dose of 1 × 107-1 × 108, twice a week, that will be
administered intravenously over 1 h in previously treated
advanced NSCLC. NCT04050709 is a phase I study to
assess the safety and preliminary efficacy of PD-L1 t-haNK
and to determine the maximal tolerated dose and des-
ignate the recommended phase II dose in subjects with
locally advanced or metastatic solid cancers. In a phase II,
three-cohort (2 randomized and 1 single-arm), open-label
study (NCT04390399) the comparative efficacy and overall
safety of standard-of-care chemotherapy versus standard-
of-care chemotherapy in combination with aldoxorubicin
HCl, N-803, and PD-L1 t-haNK in subjects with locally
advanced or metastatic pancreatic cancer are evaluated.
Another phase II study (NCT04847466) is testing the effec-
tiveness of irradiated PD-L1 t-haNK cells combined with
anti-PD-1 (pembrolizumab) and N-803 in people with
advanced forms of gastric or head and neck cancer. The
efficacy of PD-L1 t-haNK with a PD-1/PD-L1 checkpoint
inhibitor and N-803 in patients with solid tumors that
have progressed and/or relapsed after PD-1/PD-L1 ICIs
is also being determined in a phase IIb, multicohort,
open-label multicenter study (NCT03228667). In another
phase Ib/II open-label study (NCT04927884), the safety
and efficacy of sacituzumab govitecan-hziy (an Ab-drug
conjugate) in combination with chemoimmunotherapy
(cyclophosphamide, N-803, and PD-L1 t-haNK) in subjects
with TNBC after at least 2 prior treatments for metastatic
disease is being evaluated. Table 2 shows clinical studies
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TABLE 2 Clinical studies of CAR-NK cells targeting immune checkpoints for the treatment of solid tumors

No. NCT Status Phase Target Cancer NK source Combination agent
NCT03656705 Enrolling by

invitation
I PD-L1 Non-small cell lung cancer CCCR-NK-92

cells
Not applicable

NCT04050709 Active, not
recruiting

I PD-L1 Locally advanced or
metastatic solid cancers

haNK Not applicable

NCT04390399 Recruiting II PD-L1 Pancreatic cancer haNK N-803
Aldoxorubicin HCl
Nab-paclitaxel
Gemcitabine
Cyclophosphamide
5-fluorouracil
Leucovorin
Stereotactic Body Radiation Therapy
Irinotecan liposome

NCT04847466 Recruiting II PD-L1 Recurrent/metastatic
gastric or head and neck
cancer

haNK N-803
Pembrolizumab

NCT03228667 Active, not
recruiting

II PD-L1 Non-small cell lung cancer,
small cell lung cancer,
urothelial carcinoma,
head and neck
squamous cell
carcinoma, merkel cell
carcinoma, melanoma,
renal cell carcinoma,
gastric cancer, cervical
cancer, hepatocellular
carcinoma,
microsatellite instability,
mismatch repair
deficiency, and
colorectal cancer

haNK N-803
Pembrolizumab
Nivolumab
Atezolizumab
Avelumab
Durvalumab

NCT04927884 Recruiting I/II PD-L1 Advanced triple-negative
breast cancer

haNK N-803
Sacituzumab govitecan-hziy
Cyclophosphamide

Abbreviations: PD-L1, programmed death-ligand 1; CCCR, chimeric costimulatory converting receptor; hank, high-affinity natural killer.

of CAR-NK cells targeting immune checkpoints for the
treatment of solid tumors.

7 Conclusion and future perspectives

Although checkpoint inhibitor therapy has been demon-
strated to restore anti-tumor immune responses, a single
checkpoint disruption does not necessarily result in NK
or T cell function, and many cancers develop initial
resistance or adapt to become resistant to subsequent
treatments [306]. To combat this resistance, researchers
are currently investigating combinations of ICIs. A grow-
ing body of evidence suggests that this approach has
the potential to improve anti-tumor activity and response
rates dramatically [307]. In clinical trials and/or animal
models, checkpoint inhibitors may also be used with

other therapies such as radiation therapy, targeted ther-
apy, chemotherapy, epigenetic modulators, TLR agonists,
or other immunotherapies. It’s also worth noting that sys-
temic administration of ICIs medications can exacerbate
immune-related side effects [308]. As a result, alternate
treatments with fewer side effects must be developed.
Currently, the BiKE and TriKE constructs exhibit great

translational potential, but efforts are being made to fur-
ther improve their efficacy. The efficacy of BiKEs and
TriKEsmay be limited by CD16 expression because by acti-
vating NK cells through CD16, matrix metalloproteinases
(MMPs), such as ADAM-17, rapidly clip CD16 from their
surface [309–312]. Therefore, BiKE/TriKE function may
be enhanced by co-treatment with the ADAM-17 inhibitor
[313]. Another approach is targeting other receptors on
NK cells to circumvent the CD16 problem [314]. BiKE-
mediated NK cell function may also be enhanced by the
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F IGURE 4 Targeting lentiviral for identifying NK cell surface receptor and CAR-NK cell-derived exosome as future directions in
CAR-NK cell therapy. (A) Targeting lentiviral to identify distinct surface markers on NK cells in vivo as entrance receptors would have
significant implications for adoptive immunotherapy development in the future. (B) Exosomes expressing CAR derived from CAR-NK cells
may offer superior benefits to CAR-NK cells, opening a novel cell-free immunotherapy pathway and suggesting promising treatment for solid
tumors. Abbreviations: NK, natural killer; CAR, chimeric antigen receptor; IFN-γ, interferon gamma.

co-administration of cytokines such as IL-15, IL-2, IL-21,
and IL-12 [314].
Compared to Abs, aptamers are still in a nascent

stage, meaning further development is required to ensure
widespread adoption. Clinical trials testing aptamers’ ther-
apeutic effects are needed to accurately determine their
clinical potential for cancer treatment. Although aptamer-
based cancer therapies have huge potential, their disadvan-
tages, such as serum instability and rapid renal clearance,
may limit their application. Therefore, modifications are
needed to enhance their in vivo half-life and their superior
therapeutic benefits [21].
Based on a growing amount of evidence, CAR-NK cell-

based cancer therapy has emerged as a promising and
advanced research area. However, the field of CAR-NK
therapy is still in its infancy, and many questions remain
unresolved. To mention a few, these include determining
the best NK cell source for immunotherapy, enhancing
persistence capacity, determining the best protocol for

introducing foreign genetic material into NK cells due
to NK cells’ resistance to genetic engineering and opti-
mizing them using viral vectors, nonviral alternatives
such as electroporation, nucleofection, lipofection, trans-
poson systems, trogocytosis or nanoparticle treatment; and
genome editing using CRISPR/Cas9, ZFNs or transcrip-
tional activator-like effector nucleases (TALENs). Also,
determiningCARswith the optimumstructure for improv-
ing NK cell proliferation, activation, cytokine production,
and cytolytic activity, the best ex vivo expansion method
for acquiring a homogeneous suspension of memory-like,
unexhausted NK cells from harvested NK cells to obtain
clinically relevant numbers, incorporating a suicide gene
into CAR-NK cells as an important point for safety con-
cerns and best freezing media to improve the preservation
of NK cells are other challenges in the development of NK
cell-based immunotherapy.
Targeting lentiviral to identify distinct surface mark-

ers as entrance receptors have enabled precise in vivo
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gene delivery into certain cell types [315, 316]. Engi-
neering human NK-targeted vectors capable of efficient
and highly selective gene delivery into human NK cells
in vivo would have significant implications for adoptive
immunotherapy development in the future. The targeted
vectors will be employed as a therapeutic tool in this
situation, and the cells will not need to be prepared
or expanded ex vivo (Figure 4A). Exosomes, which are
released by immune cells, can affect tumors or the anti-
tumor immune response. Exosomes fromNK cells contain
FasL, granulysin, perforin, and granzyme A and B, which
have cytotoxic properties against tumor cells [317–319].
Researchers have previously demonstrated the safety and
efficacy of CAR exosomes in treating tumors. A recent
study showed that purified CAR-T cell exosomes expressed
CARs, and these CAR+ exosomes expressed a high level
of cytotoxic molecules and were cytotoxic to tumor cells.
As opposed to CAR-T cells, CAR exosomes did not express
PD-1, and their anti-tumor effect could not be weakened
by recombinant PD-L1 treatment. CAR exosomes were
relatively safe compared to CAR-T therapy in a preclin-
ical in vivo model of cytokine release syndrome (CRS)
[320]. Exosomes have been shown in multiple studies to
have several other benefits, including accessibility and
storage, the ability to pass through the blood–brain and
blood–tumor barriers, the ability to load various effector
molecules, and the ability to combine other therapeutic
modalities [321, 322] making them potential alternatives
to cell therapies. As a result, exosomes expressing CAR
derived from CAR-NK cells may offer superior benefits
to CAR-NK cells, opening a novel cell-free immunother-
apy pathway that has yet to be explored (Figure 4B). The
nanometer size of NK extracellular vesicles as well as
their ability to survive in acidic TME makes CAR-NK cell-
derived extracellular vesicles a promising treatment for
solid tumors. In addition, a novel biomimetic platform,
nanoparticles (NPs) camouflaged in the cell membranes,
mimics some membrane functions of the cells from which
these membranes are derived in biological systems. It is
also suggested to design biomimetic nanostructures by
coating NPs with NK-secreted exosomes containing iden-
tifying markers (e.g., CD226) and cell-death markers (e.g.,
TRAIL, FAS, and perforin/granzyme B) for targeting and
killing circulating tumor cells (CTCs) [323]. It is desired to
develop exosome-biomimetic nanoparticles with good bio-
compatibility and high drug loading for the treatment of
cancer.
It is expected that a variety of combinatorial approaches

will be developed in the near future to improve NK cell
active tumor targeting, persistence and trafficking, higher
cytotoxicity while maintaining safety, and improved resis-
tance to immunosuppressive TME. Also, more research
needs to be conducted on the safety, tolerability, and effec-

tiveness of checkpoint inhibitors and their combinations.
To identify appropriate patient populations for specific
therapies, it is important to understand the immune phe-
notypes of tumors, lymphocyte infiltration, and TME
composition. This could assist with deciding which ther-
apies or combinations will be the most effective. Further-
more, identification of biomarkers for the prediction and
monitoring of the response to specific therapies or the
appropriate combination of therapies is essential.
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