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LETTER TO TH E EDITOR

Novel endogenous endoplasmic reticulum transmembrane
protein SURF4 suppresses cell death by negatively
regulating the STING-STAT6 axis in myeloid leukemia

Dear Editor,
Myeloid differentiation was shown to be associated with
reduced leukemic cell burden and leukemia-initiating
cells and improved survival [1]. Reactive oxygen species
(ROS) are associated with leukemia and can induce endo-
plasmic reticulum (ER) stress. ER stress induces several
mechanisms, including cell death [2]. The stimulator of
interferon genes (STING) is also an ER transmembrane
protein and promotes anti-tumor immunity by linking
innate and adaptive immunity [3]. Signal transducer and
activator of transcription 6 (STAT6) plays a prominent role
in adaptive immunity by transducing signals fromextracel-
lular cytokines and inducing apoptosis in cancer cells [4].
Surfeit 4 (SURF4) is a multi-pass ER transmembrane pro-
tein that participates in the ER-Golgi compartment, and
SURF4 was found to be amplified and highly expressed
in leukemic cells (Supplementary Figure S1A) and several
cancer types, including blood cancers [5]. STING interacts
with STAT6 in the ER, and TANK-binding kinase 1 (TBK1)
activates pSTAT6Y641, leading to anti-tumor effects in can-
cer cells [6]. Interestingly, SURF4 binds to STING [7], but
it remains unclear how the STING-TBK1-STAT6 axis yields
anti-tumor effects in blood cancers. The studymethods are
detailed in the Supplementary Materials.
To determine the function of SURF4 in myeloid

leukemic cells, we transduced multiple short hairpin
RNA (shRNA) constructs targeting SURF4 in myeloid
malignancies. Three shRNAs targeting distinctive regions
within the SURF4 transcript provided effective knock-
down in THP1, HL60 and K562 myeloid leukemic cells

Abbreviations: ROS, Reactive oxygen species; ER, endoplasmic
reticulum; STING, stimulator of interferon genes; STAT6, signal
transducer and activator of transcription 6; SURF4, surfeit 4; TBK1,
TANK-binding kinase 1; shRNA, short hairpin RNA; sgRNA,
single-guide RNA; AML, acute myeloid leukemia; scRNA-seq,
single-cell RNA sequencing; UMAP, uniform manifold approximation
and projection; HSCs, hematopoietic stem cells; cDCs, conventional
dendritic cells; GO, Gene Ontology.
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(Supplementary Figure S1B). SURF4 shRNA-transfected
THP1, HL60 and K562 myeloid leukemic cells showed
significantly reduced proliferation compared to control
cells (Figure 1A). Further, we found an increased num-
ber of apoptotic cells in SURF4 shRNA-mediated THP1,
HL60 and K562 myeloid leukemic cells (Figure 1B, Sup-
plementary Figure S1C) and single-guide RNA (sgRNA)
deletion of Surf4 in normal hematopoietic progenitor cells
(Supplementary Figure S1D). It is reported that AKT
and ERK signaling pathways are implicated in myeloid
leukemia, ROSs are associated with leukemia, and pro-
longedROS elevation to activate the JunN-terminal kinase
(JNK)/c-JUN signaling pathway [8]. Increased phospho-
JNK (pJNK) expression and decreased pERK and pAKT
expression were detected in these cells (Supplementary
Figures S1E-F). Interestingly, SURF4 shRNA-mediated
THP1 and HL60 cells and sgRNA deletion of Surf4 in
Mll/Af9 cells exhibited significantly increased differenti-
ation (Supplementary Figure S1G-H) and accumulation
of ROS (Supplementary Figure S1I), respectively. In addi-
tion, the silencing of SURF4 led to tumor growth arrest
in vivo (Figure 1C). No differences in the cell cycle sta-
tus were observed from the SURF4 shRNA-mediated THP1
and K562 cells (Supplementary Figure S1J). Collectively,
SURF4 suppressed myeloid differentiation and ROS pro-
duction and inhibited cell death in myeloid leukemic
cells.
Prolonged ER stress initiates the mechanisms of cell

death [2]. Signaling apoptosis in response to ER stress
is mainly associated with the apoptotic PKR-like ER
kinase (PERK), which phosphorylates the eukaryotic ini-
tiation factor 2α (eIF2α) and C/EBP homologous protein
(CHOP) axis. We then tested whether SURF4 contributed
to the cell death effects of combinatorial treatments with
paclitaxel (Figure 1D, Supplementary Figure S2A), cytara-
bine (Figure 1E, Supplementary Figure S2B), tunicamycin
(Figure 1F, Supplementary Figure S3A), interleukin 4
(IL4) (Figure 1G, Supplementary Figure S3B), or STING
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F IGURE 1 Impact of SURF4 on myeloid leukemic cells. (A) SURF4 shRNA-mediated THP1, HL60, and K562 cells were counted every
two days. (B) Quantification of apoptotic cells from SURF4 shRNA-mediated THP1, HL60, and K562 cells. (C) Tumorigenicity was analyzed
with a xenograft model of NOD-SCID mice. Subcutaneous injection of SURF4 shRNA-mediated HL60 cells was performed and tumor growth
was quantified (n = 5). (D-F) Quantification of the apoptotic cells from SURF4 shRNA-mediated THP1, HL60, and K562 cells after paclitaxel
(D), cytarabine (E), or tunicamycin (F) treatment. (G) Quantification of the apoptotic cells from SURF4 shRNA-mediated THP1 and HL60
cells after IL4 treatment. (H) Quantification of the apoptotic cells from SURF4 shRNA-mediated THP1 cells after cGAMP treatment. (I)
Quantification of the normalized fold change in MFI for the indicated phospho-protein in SURF4 shRNA-mediated THP1 cells. (J) Survival
analyses for SURF4. Overall survival for 4 years with Kaplan-Meier curve stratified by SURF4 expression. (K) UMAP visualization of cells
from normal and AML patients. In the UMAP plot, each point represents a cell, and the space of the point reflects the location of the cell in
low-dimensional space based on transcriptional similarity. The left panel is colored by the cell type of bone marrow, and the right panel shows
UMAPs separated by donor origin. (L) Gene expression levels of SURF4 in whole cells, progenitors, and HSCs. The Y-axis of the violin plot is
log-normalized counts of SURF4, and the described p-value was derived using the Wilcox rank-sum test comparing the gene expression levels
in the normal and AML cells. (M) SURF4 negatively regulates STAT6 and STING functions and suppresses differentiation and cell death in
myeloid leukemic cells. Error bars indicated the S.E.M. (**** P ≤ 0.001, *** P ≤ 0.001, ** P ≤ 0.01, * P ≤ 0.05). (n = 2 independent experiments
and 3 total measurements per group and treatment).
Abbreviations: ROS, Reactive oxygen species; ER, endoplasmic reticulum; STING, stimulator of interferon genes; STAT6, signal transducer
and activator of transcription 6; SURF4, surfeit 4; sgRNA, single-guide RNA; AML, acute myeloid leukemia; scRNA-seq, single-cell RNA
sequencing; UMAP, uniform manifold approximation and projection; cDCs, conventional dendritic cells; GO, Gene Ontology.

agonist cyclic GMP-AMPs (cGAMP) (Figure 1H, Supple-
mentary Figure S3C) on SURF4 shRNA-mediated myeloid
leukemic cells, respectively. These molecules were shown
to activate ER stress, STAT6 and STING signaling path-
ways, and led to cell death in cancer cells [2–4, 6].
Increased cell death was detected in SURF4 shRNA-
mediatedmyeloid leukemic cells after combinatorial treat-
ment with paclitaxel, cytarabine, tunicamycin, IL4, or
cGAMP. Western blotting after paclitaxel, tunicamycin,
IL4, or cGAMP treatment of SURF4 shRNA-mediated
THP1 cells showed activation of cleaved caspase 9, cas-
pase 3, cleavage of poly(ADP-ribose) polymerase 1 (PARP1)
(Supplementary Figure S4A), phospho-eukaryotic initia-
tion factor 2α (peIF2α), activating transcription factor 4
(ATF4), C/EBP homologous protein (CHOP) (Supplemen-
tary Figure S4B), pSTAT6 (Supplementary Figure S4C-D),
pTBK1 and pIRF3 (Supplementary Figure S4E), respec-
tively. We quantified the intensity of these western blots.
Silencing of SURF4 increased pSTAT6 levels in association
with depleted SURF4 levels with and/or without IL4 treat-
ment (Supplementary Figure S4D, F). pTBK1 and pIRF3
are downstream targets of the STING signaling pathway,
and increased pTBK1 and pIRF3 expression were detected
in SURF4 shRNA-mediated THP1 cells (Figure 1I, Sup-
plementary Figure S4E). Collectively, depletion of SURF4
synergistically induces apoptosis inmyeloid leukemic cells
via anti-cancer drugs, such as paclitaxel, cytarabine, and
ER stress inducers, such as tunicamycin. IL4-dependent
pSTAT6 and/or STING activation-induced apoptosis was
also increased in SURF4-silenced leukemic cells.
Next, we explored the overall survival of acute myeloid

leukemia (AML) patients based on relative levels of SURF4

expression from the cancer genome atlas (TCGA). Indi-
viduals with high SURF4 expression had significantly
shorter survival than those with low SURF4 expres-
sion (Figure 1J). Further, to characterize the expression
of SURF4 in AML, we downloaded and explored the
AML single-cell RNA sequencing (scRNA-seq) datasets
[9] (Figure 1K). The scRNA-seq data from bone mar-
row (BM) cells of normal healthy donors and AML
patients were subjected to uniform manifold approxima-
tion and projection (UMAP) analysis. SURF4 was highly
expressed in the total population and displayed remark-
ably high expression in hematopoietic stem cells (HSCs)
and progenitor cells from AML patients (Figure 1L).
However, there are no differences in SURF4 expres-
sion in the AML cells from conventional dendritic
cells (cDCs), granulocyte-macrophage progenitor (GMP)
cells, monocytes (mono), and promonocytes (promono)
compared with normal healthy donors (Supplementary
Figure S5A). Gene ontology (GO) analysis revealed that
SURF4 might be associated with differentially expressed
immune responses [3, 4, 6, 7] (Supplementary Figure S5B).
Collectively, the expression of SURF4 was significantly
increased in AML patients, suggesting that SURF4 is rel-
evant to the pathogenesis of hematological malignancies
(Figure 1M).
In this study, we demonstrated that SURF4 suppressed

myeloid differentiation and inhibited cell death inmyeloid
leukemic cells via negatively regulating the STING-TBK1-
STAT6 axis. Thus,we propose that the inhibition of SURF4,
such as using monoclonal antibodies and/or aptamer, may
be used as a potential therapeutic strategy for the treatment
of hematological malignancies.
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