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LETTER TO TH E EDITOR

Radioimmunotherapy-induced intratumoral changes in
cervical squamous cell carcinoma at single-cell resolution

Dear Editor,
Increasing numbers of studies have revealed the

immunomodulating effects of radiotherapy when
combinedwith immune checkpoint inhibitors, as radioim-
munotherapy has proven to be a promising treatment [1].
Radioimmunotherapy has shown significantly improved
tumor responses than radiotherapy or immunotherapy
alone in various malignant tumors [2–4]. It has also been
applied to cervical cancer in multiple ongoing clinical
trials (NCT03612791 [5] and NCT02635360 [6]). However,
tumor recurrence andmetastasis are often unavoidable. As
such, investigations into radioimmunotherapy-induced
tumor ecosystem evolution are essential for guiding
improvements in treatment strategies that achieve bet-
ter long-term disease control. To date, several studies
have investigated radiochemotherapy-induced tumor
ecosystem evolution using bulk RNA-sequencing and
immune staining [7, 8]. However, these findings were
limited owing to the cellular heterogeneity in cancers.
Single-cell RNA-sequencing (scRNA-seq) enables the
characterization of cell compositions and transcriptomic
states in the tumor at single-cell resolution.
To investigate radioimmunotherapy-induced intratu-

moral changes, we performed scRNA-seq on a pair of
cervical squamous cell carcinoma (CESC) samples before
and during radioimmunotherapy. The study protocols are
found in the Supplementary Materials. A total of 17,769
cells were obtained, with an average gene number of 1,875
after quality control. Using uniform manifold approxi-
mation and projection (UMAP) analysis, we identified
nine main cell types: T cells (CD3D+, CD3E+), plasma
cells (IGHG1+, IGHG3+), macrophages (CD14+, CD68+),
monocytic myeloid-derived suppressor cells (M-MDSCs)
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APOE, apolipoprotein E; CXCL8, C-X-C Motif Chemokine Ligand 8;
CCR7, C-C Motif Chemokine Receptor 7; GZMK, Granzyme K; NK,
natural killer; Treg, regulatory T.
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(CD14+, S100A12+), mast cells (CPA3+,KIT+), two types of
cancer-associated fibroblasts (ACTA2+, DCN+), endothe-
lial cells (VWF+, CDH5+), and epithelial cells (KRT19+,
EPCAM+) (Supplementary Figure S1). The epithelial and
immune cells accounted for 82% of all cells we obtained;
therefore, we focused on the evolution of these cells at
single-cell resolution.
In this study, five epithelial cell subclusters (Epi1-5) were

identified by UMAP with distinct transcriptional features,
such as Epi3 with high expression of squamous carcinoma
cell markers KRT5, KRT6A, and KRT13, and Epi4 with
high expression of normal cervical columnar cell mark-
ers MUC5AC and MUC5B (Figure 1A, B, Supplementary
Figure S2A, Supplementary Table S1).
Next, we investigated the change in epithelial cell

subclusters before and during radioimmunotherapy. The
proportions of Epi4 and Epi1 were elevated, while Epi3
decreased and Epi5 disappeared during radioimmunother-
apy (Figure 1C, D). Differentially expressed genes in
epithelial cells showed that the expression levels of
squamous carcinoma cell markers, such as KRT5 and
KRT6A, were decreased, while normal cervical colum-
nar cell markers, such as MUC5B, were increased during
radioimmunotherapy (Figure 1E, Supplementary Table
S2). Interestingly, we compared the expression profiles
of normal (MUC5B, MUC5AC, EPCAM, and SOX17)
and malignant (TP63, CDKN2A, KRT5, KRT6A, KRT13,
and KRT14) marker genes in epithelial cells before and
during radioimmunotherapy and found that malignant
marker gene expression of Epi1-3 was enriched before
radioimmunotherapy and significantly decreased dur-
ing radioimmunotherapy, while normal epithelial marker
genes showed contrary results (Figure 1F). Only Epi3 cells
still showed enrichment of malignant cervical epithelial
cell marker genes, but the Epi3 cells were at a low fraction
of all epithelial cells during radioimmunotherapy.
Further, we evaluated the cell cycle activation of the

five epithelial cell subclusters and found that most Epi3
and Epi5 cells experienced S and G2M phases, while most
Epi1-2 and Epi4 cells experienced the G1 phase (Figure 1G,
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F IGURE 1 Single-cell transcriptomics identifies tumor and immune microenvironment evolution induced by radioimmunotherapy in
human CESC. (A, B) UMAP of epithelial cells showing five epithelial cell subclusters. Each dot represents a single cell, color-coded by cell
clusters (A) and treatment status (B). (C) Changes in the composition of the five epithelial cell subclusters before and during
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Supplementary Figure S2B). Radioimmunotherapy
changed the cell cycle statuses of epithelial cells from the
S and G2M phases to the G1 phase (Figure 1H). Taken
together, radioimmunotherapy reprogramed epithelial
cell subclusters from a malignant phenotype to a normal
phenotype with a low fraction of residual Epi3 cells main-
taining a malignant phenotype, implying a heterogeneous
intratumoral response to radioimmunotherapy.
Macrophages have diverse roles, with complicated pro-

inflammatory and anti-inflammatory characteristics in
the tumor immune microenvironment. They were cate-
gorized into five subclusters with distinct transcriptional
profiles in our study, consisting of M-MDSCs (FCN1+,
S100A12+), APOE+ macrophages, CXCL8+ macrophages
(CXCL8+), CCR7+ macrophages (CCR7+), and proliferat-
ing macrophages (MKI67+) (Figure 1I, J, Supplementary
Figure S3, Supplementary Table S3). Evaluation of the
M1 and M2 features of these macrophage subclusters
revealed that APOE+ macrophages had the highest M2
score, while all subclusters showed similar M1 scores
except CCR7+ macrophages (Figure 1K, L, Supplemen-
tary Figure S4). We also found that the proportion of
APOE+ macrophages was increased and occupied the
largest proportion of macrophages, while the propor-
tion of proliferating macrophages was decreased during
radioimmunotherapy (Figure 1M, N). Evaluation of the
M1 and M2 scores before and during radioimmunother-
apy showed that APOE+ macrophages had a decreased
M1 score and an increased M2 score, while CXCL8+
macrophages had an increased M1 score (Figure 1O).
Given the synergy between macrophage reprogramming
strategies and immunotherapy [9], a strategy based on tar-
geting tumor-associated macrophages might reverse the

immunosuppressive microenvironment during radioim-
munotherapy and achieve a better immune response, such
as targeting APOE macrophages.
Tumor-infiltrating lymphocytes also have an important

role in eliminating cancer cells, which become exhausted
in tumors characterized by high expression of inhibitory
molecules. For lymphocytes in our study, we identified
seven subclusters with distinct transcriptional profiles,
consisting of naïve CD4+ T (CD4+, CCR7+), regulatory
T cell (Treg) (CD4+, FOXP3+), GZMK+CD8+ T (CD8A+,
GZMK+), CXCL8+CD8+ T (CD8A+, CXCL8+), exhausted
CD8+ T (CD8A+, LAG3+), proliferating CD8+ T (MKI67+),
and natural killer (NK) (NCAM1+) cells (Figure 1P, Q,
Supplementary Figure S5, Supplementary Table S4). Then,
we evaluated naïve, cytotoxic, inhibitory, Treg, and pro-
liferating scores for the seven subclusters and found that
naïve CD4+ T cells had the highest naïve scores, NK
and exhausted CD8+ T cells had high cytotoxic scores,
Treg and exhausted CD8+ T cells had high inhibitory
scores, Treg cells had the highest Treg scores, and prolif-
erating CD8+ T cells had the highest proliferating scores
(Figure 1R, Supplementary Figure S6). Next, among the
T and NK cells during radioimmunotherapy, we found
that the proportion of naïve CD4+ T cells was increased,
while GZMK+CD8+ T and proliferating CD8+ T cells were
decreased; naïve CD4+ T, Treg, and exhausted CD8+ T
cells accounted for the majority of these cells (Figure 1S,
T). These findings differ from those recently reported in
another study that focused on the tumor immune response
after low-dose radiotherapy [10]; here, CD4+ T cells with
features of exhausted effector cytotoxic cells were predom-
inantly elicited. Treg and exhausted CD8+ T cells showed
decreased inhibitory scores; NK and exhausted CD8+ T

radioimmunotherapy. (D) Bar graph showing the proportion of each of the five epithelial cell subclusters quantified in tissue before and
during radioimmunotherapy. (E) The top ten scaled differentially expressed genes of epithelial cells before and during radioimmunotherapy.
(F) Changes in gene expression of typical markers for normal and malignant cervical epithelial cells induced by radioimmunotherapy, colored
by scaled mean expression levels. (G) Cell cycle stage of the five epithelial cell subclusters presented in the UMAP plot, colored by cell cycle
phases. (H) Bar graph showing the proportion of cells in different cell cycle stages in tissues before and during radioimmunotherapy. (I, J)
UMAP of macrophages showing five subtypes. Each dot represents a single cell, color-coded by cell clusters (I) and treatment status (J). (K, L)
Cumulative distribution function showing the distribution of M1 (K) and M2 (L) signature scores in each macrophage subtype. A rightward
shift of the curve indicates an increased score. (M) Changes in the composition of the five macrophage subtypes induced by
radioimmunotherapy. (N) Bar graph showing the proportion of the five macrophage subtypes in tissues before and during
radioimmunotherapy. (O) Radioimmunotherapy-induced M1/M2 signature changes in each macrophage subtype. (P, Q) UMAP of T and NK
cells showing seven subclusters. Each dot represents a single cell, color-coded by cell clusters (P) and treatment status (Q). (R) Expression of
signature gene sets in the seven T and NK cell subclusters. (S) Changes in the composition of the seven T and NK cell subclusters before and
during radioimmunotherapy. (T) Bar graph showing the proportion of the seven T and NK cell subclusters in tissues before and during
radioimmunotherapy. (U) Radioimmunotherapy-induced signature gene sets changes in each T and NK cell subclusters. Note: “Pre-T”
denotes cells taken before radioimmunotherapy, and “On-T” denotes cells taken during radioimmunotherapy treatment. Abbreviations:
CESC, cervical squamous cell carcinoma; UMAP, uniform manifold approximation and projection; M-MDSC, monocytic myeloid-derived
suppressor cells; APOE, apolipoprotein E; CXCL8, C-X-C Motif Chemokine Ligand 8; CCR7, C-C Motif Chemokine Receptor 7; GZMK,
Granzyme K; Epi, epithelial cell; NK, natural killer cell; Mac, macrophage; Treg, regulatory T cell; Pre-T, pre-treatment; On-T, on-treatment;
Exp, expression
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cells showed decreased cytotoxic scores during radioim-
munotherapy (Figure 1U). Together, these data show that
radioimmunotherapy induced a decrease in the inhibitory
scores of residual exhausted CD8+ T and Treg cells in
CESC.
It is important to consider several limitations in our

study. First, this was a preliminary study with a sin-
gle patient dataset that does not necessarily represent
the cohort of patients with CESC who received radioim-
munotherapy because of the intertumoral heterogeneity. A
large-scale study is thus needed to confirm and extend our
findings. Second, spatial information is needed to under-
stand the location of cells and their interactions to bet-
ter understand the basis of radioimmunotherapy-induced
CESC evolution.
In conclusion, we revealed that radioimmunotherapy

induced tumor and immune microenvironment evolu-
tion in human CESC at single-cell resolution. Radioim-
munotherapy changed epithelial cell subclusters from
a malignant to a normal phenotype with a few resid-
ual malignant cells, increased APOE+ macrophages with
high levels of M2 features, and induced a decrease in
the inhibitory scores of residual exhausted CD8+ T and
Treg cells. These results provide deep insights into cancer
radioimmunotherapy and identify potential therapeutic
targets that could be combined with radioimmunotherapy.
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