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LETTER TO TH E EDITOR

Two distinct stem cell-like subtypes of hepatocellular
carcinoma with clinical significance and their therapeutic
potentials

Dear Editor
Hepatocellular carcinoma (HCC) is among the most com-
mon cancers worldwide, causing about 600,000 deaths
annually [1]. In HCC, stem cell-like characteristics, which
drive early recurrence and therapy resistance, are major
contributors to poor prognosis [2]. In this current study, we
integrated and analyzed gene expression data from human
fetal liver cells and primary HCC tumors (n = 1231) and
uncovered two clinically and biologically distinct hepatic
stem cell (HS) subtypes, potential biomarkers associated
with these subtypes, and a potential new therapeutic inter-
vention for these subtypes.
By analyzing gene expression data from human fetal

liver cells [3], we identified 609-, 2538-, and 1139-gene sig-
natures for gestational 10-week fetal liver cells, 17-week
fetal liver cells, andmature hepatocytes, respectively (Sup-
plementary Fig. S1A). Because 10- and 17-week fetal liver
cells reflect different degrees of stemness of hepatic lin-
eage, as reflected by α-fetoprotein expression (Supplemen-
tary Fig. S1B), we renamed the gene signatures specific to
the 10- and 17-week cells hepatic stem cell type 1 (HS1) and
hepatic stem cell type 2 (HS2), respectively. To estimate the
clinical relevance of stem cell-like characteristics in pri-
mary HCC, we trichotomized HCC tumors as HS1, HS2,
or differentiated HCC (dHCC) subtypes according to their
degree of stemness by applying the prediction algorithm
to the gene expression data from HCC tumors (n = 1226)
(Supplementary Fig. S1C). The HS1 subtype was associ-
ated with worst overall survival, the HS2 subtype exhibited
moderate overall survival, and the dHCC subtype exhib-
ited the best overall survival (P < 0.001, Figure 1A). When
patients with Barcelona Clinic Liver Cancer stage A or B

Abbreviations: BCCP, Bayesian compound covariate prediction; BET,
bromodomain and extra-terminal domain; dHCC, differentiated HCC;
HCC, hepatocellular carcinoma; HS, hepatic stem cells; HS1, hepatic
stem cell 1; HS2, hepatic stem cell 2; PDX, patient-derived xenograft;
TIDE, tumor immune dysfunction and exclusion
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disease were stratified by HS subtype, the subtypes suc-
cessfully stratified high-risk patients at both stages (Sup-
plementary Fig. S2). In addition to clinical stage and resec-
tion status, the HS subtypes were significant predictors of
overall survival, except HS2 for recurrence-free survival, in
multivariate Cox proportional hazards regression analyses
(Supplementary Table S1 and S2). The HS subtypes were
also significantly associated with some clinicopathological
variables (Supplementary Fig. S3).
Interestingly, while there was no significant difference

in the subtypes’ mutation rates, HS1 subtype showed sig-
nificantly different copy number alteration score when
compared with other subtypes (Figure 1B). The HS1 sub-
type showed higher rates ofTP53 andRB1mutations, while
the HS2 subtype showed frequent IL6ST and CDKN2A
mutations (Supplementary Fig. S4). Since the HS1 subtype
showed the highestmicroRNAexpression (Supplementary
Fig. S5), it will be interesting to test in future studies if they
play important roles inmaintaining the stemness of cancer
cells.
As a combination of targeted treatment and immune

checkpoint blockade has been reported to have encourag-
ing results in HCC [4], we assessed each subtype’s poten-
tial response to immunotherapy using tumor immune dys-
function and exclusion (TIDE) scores which reflects their
degrees for immunotherapy resistance [5]. Both HS sub-
types showed high TIDE scores (Figure 1C), suggesting
that patientswith eitherHS subtypewould not benefit sub-
stantially from immunotherapy. In agreement with this,
the HS subtype probability and TIDE scores were posi-
tively correlated (Supplementary Fig. S6A). In an analy-
sis using the CIBERSORT algorithm [6], which estimates
the relative fractions of immune cells (Supplementary
Fig. S6B), the non-activated naïve M0 macrophage frac-
tion was significantly higher in both HS subtypes (Sup-
plementary Fig. S6C, D), suggesting that a lack of active
macrophages could be contributing to the HS subtypes’
low immunotherapy response. Furthermore, the fraction
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F IGURE 1 Clinical and biological significance of hepatic stem cell subtypes. (A) Kaplan-Meier plot of the OS for patients with
hepatocellular carcinoma (HCC; n = 1226). HCC patients were trichotomized by Bayesian compound covariate prediction. P-values were
estimated using log-rank tests. (B) Non-synonymous mutation rates and copy number alterations in stem cell subtypes of HCC in The Cancer
Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) cohort (n = 371). (C) Waterfall plots showing the rates of immunotherapy
response predicted by the tumor immune dysfunction and exclusion (TIDE) algorithm in the TCGA-LIHC cohort. The percentages of patients
with each subtype who were responders are shown below the plots. (D) Western blots of YAP1 and MYC after JQ1 treatment. The
bromodomain and extra-terminal domain (BET) inhibitor JQ1 downregulated YAP1 expression but not MYC expression in SK-Hep1 and
SNU449 cells. (E) Viability of HCC cells treated with JQ1. P-values were estimated using the Student t-test. (F) The depletion of three BET
proteins (BRD2, BRD3, and BRD4) was necessary for the suppression of YAP1 expression in HepG2 cells. BET protein expression was depleted
by single-guide RNAs specific to each BET protein.
Abbreviations: OS, overall survival; HCC, hepatocellular carcinoma; dHCC, differentiated hepatocytes; HS2, hepatic stem cell type 2; HS1,
hepatic stem cell type 1; TCGA-LIHC, The Cancer Genome Atlas Liver Hepatocellular Carcinoma; TIDE, tumor immune dysfunction and
exclusion; BET, bromodomain and extraterminal domain; sgBRD, single-guide RNA against BRD mRNAs; DMSO, dimethyl sulfoxide

of immunosuppressive regulatory T cells was higher in the
HS subtypes (Supplementary Fig. S6C, D), suggesting that
regulatory T cells also play roles in the immune reactivity
of HCC cells. The level of myeloid-derived suppressor cells
as determined by the TIDE algorithmwas significantly ele-

vated in both HS subtypes (Supplementary Fig. S7A). Like-
wise, the expression of major immune checkpoints (PD-1,
PD-L1, and CTLA4) was significantly different in the HS
subtypes (Supplementary Fig. S7B, C), further supporting
the notion that the HS subtypes are immune-suppressive.
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Interestingly, the HS1 subtype was associated with poten-
tial response to sorafenib, while the HS2 subtype was not
(Supplementary Fig. S8) (see extended discussion in Sup-
plementary File).
Wenext applied theHS signatures to the gene expression

data of 75 patient-derived xenograft (PDX) HCC tumors.
The HS signatures of the PDX tumors are highly simi-
lar to primary HCC (Supplementary Fig. S9A), indicating
that stem cell features are well-maintained in PDX tumors.
Most PDX tumors appeared to be stable as the passage
number of the PDX models differed only slightly among
subtypes (Supplementary Fig. S9B). Using targeted ELISA
for 122 serum proteins (Oncology MAP screening), we per-
formed a proteomic analysis with serum samples from
HCCpatients (n= 45, a subset of our cohort) and identified
the top five serum markers for the HS1 and HS2 subtypes
(Supplementary Fig. S10).
Gene network analysis revealed that oncogenes were

activated in the HS1 and HS2 subtypes (Supplementary
Table S3 and S4). In particular, YAP1 was highly activated
in the HS1 subtype. Since YAP1 regulates HS and is associ-
atedwith poor prognosis inHCC [7], we next examined the
potential interaction of other transcription regulators with
YAP1 by integrating the downstream target genes of each
of the transcription regulators. BRD4 exhibited the high-
est interaction with YAP1 as it shared more target genes
with YAP1 than any of the other regulators (Supplemen-
tary Fig. S11A). Of BRD4’s 37 target genes, 15 (41%) were
shared with YAP1 (Supplementary Fig. S11B), suggesting
that BRD4 interacts with or regulates YAP1 in HCC. We
also evaluated the expression of HCC-associated stem cell
markers and found that many of these stem cell markers,
including SALL4, were highly expressed in the HS1 sub-
type (Supplementary Fig. S12).
BRD4 is a member of the bromodomain and extrater-

minal domain (BET) family and a key transcriptional reg-
ulator for many oncogenes, including MYC [8]. Next, we
tested if BET members were involved in the regulation of
YAP1 expression. HCC cells treated with the BET family
inhibitor JQ1 had reduced expression ofYAP1 but notMYC,
a de facto target of BET proteins (Figure 1D, Supplemen-
tary Fig. S13A) [8], suggesting that the oncogenic activity
of the BET family is mediated by the regulation of YAP1
in HCC cells. Furthermore, JQ1 significantly reduced the
viability and migration of HCC cells (Figure 1E, Supple-
mentary Fig. S13B, C), suggesting that JQ1 can inhibit the
growth and invasion of HCC cells by suppressing YAP1.
Since JQ1 could inhibit most BET family members, we

silenced the expression of BETmembers to identify the key
members regulating YAP1. Surprisingly, complete YAP1
suppression required the depletion of all BET members
(Figure 1F), suggesting that all BET members are active
and functional in HCC cells. Most HCC cells consistently

expressed all BET members (Supplementary Fig. S13D).
In agreement with this, BET family member gene expres-
sion was highly correlated with YAP1 expression in human
HCC tumors (Supplementary Fig. S13E), which supports
the notion that BET genes regulate YAP1 in HCC.
Previous studies identified HCC subtypes with stem cell

features [9, 10] but provided only general descriptions of
those features while also listing potential therapeutic tar-
gets without providing functional validation or guidance
for treatment. In the current study, we found that HCCs
with stem cell features were not clinically or genomically
homogeneous. They differed not only in their degree of
stemness but also in their clinical outcomes and underly-
ing biology. Importantly, theHS1 subtype,whichhas a poor
prognosis, appears to be sensitive to BET inhibitors. The
newly identified serummarkers associated with these sub-
types may provide opportunities to develop marker-based
clinical trials. Furthermore, the potential marker genes we
identified are well-preserved in PDXmodels, which shows
promise for the development of accurate diseasemodels for
preclinical study.
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