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Abstract
Over the past few years, immune checkpoint inhibitors (ICIs) have greatly
improved the survival for patients with non-small cell lung cancer (NSCLC)
without drivermutations. Comparedwithwild-type tumors, tumorswith epider-
mal growth factor receptor (EGFR) mutations show more heterogeneity in the
expression level of programmed cell death-ligand 1 (PD-L1), tumor mutational
burden (TMB), and other immune microenvironment characteristics. Whether
ICIs are suitable for NSCLC patients with EGFRmutations is still worth explor-
ing. In previous studies, no significantly improved benefits were observed with
immunotherapy monotherapy in NSCLC patients with EGFR mutation. Here,
we summarized and analyzed data from the clinical trials of ICIs or combined
therapy inNSCLCpatients withEGFRmutations.We also focused on themecha-
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nisms affecting the efficacy of ICIs in NSCLC patients with EGFRmutations, the
characteristics of potential responders, and provided insights into areas worth
further investigations in future studies.
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1 BACKGROUND

Non-small cell lung cancer (NSCLC) is one of the most
common malignant tumors in the world [1]. Over the
past decade, there have been significant breakthroughs in
the research of immune checkpoint inhibitors (ICIs). Pro-
grammed cell death protein 1/programmed death-ligand 1
(PD-1/PD-L1) antibodies (atezolizumab, nivolumab, pem-
brolizumab, and durvalumab) have been approved for
the treatment of NSCLC patients. Compared with tradi-
tional cytotoxic chemotherapy, ICIs offer more benefits in
monotherapy or combined therapy for patients without
driver mutations [2].
Epidermal growth factor receptor (EGFR) mutations are

common in patients with NSCLC, accounting for nearly
20% of patients [3]. Lung cancer with EGFR mutations is
more frequent in non-smokers than in ever-smokers. In
patients with NSCLC, EGFR mutations occur in approxi-
mately 40%-60% of non-smokers and approximately 10%-
20% of ever-smokers [4]. Older patients are more likely to
harbor EGFR mutations than younger patients [5]. How-
ever, NSCLC patients with EGFRmutations have not been
found to benefit from ICIs in several trials. Ameta-analysis
based on CheckMate 057, KEYNOTE-010, and POPLAR
showed that ICI monotherapy did not prolong the overall
survival (OS) of patients with EGFR mutations compared
with docetaxel [6]. One study reported that EGFR muta-
tions were associated with hyper-progression [7]. Cur-
rently, EGFR tyrosine kinase inhibitors (TKIs) are still the
first-line choice for patients with EGFR mutations, but
resistance is inevitable [8]. Treatment options remain lim-
ited for patients who are resistant to EGFR-TKIs. There-
fore, whether ICIs can benefit TKI-treated patients with
EGFRmutations should be investigated.
Here, we reviewed the clinical trials of ICIs in NSCLC

patients with EGFR mutations to determine the poten-
tial reasons for poor efficacy and the potential benefi-
ciaries, and discussed the relevant challenges and future
directions. In brief, we conducted a systematic search in
PubMed using terms such as “NSCLC”, “EGFR”, “ICIs”,

“immunotherapy”, “TME”, “TMB”, “PD-L1”, “PD-1”, and
references from relevant articles. We included articles in
English, and there were no time limits for publication
dates. We also searched conference abstracts from unpub-
lished studies in theAmerican Society of ClinicalOncology
(ASCO) and the European Society ofMedical Oncology for
data analysis.

2 CLINICAL EFFICACY Of ICIs IN
EGFR-MUTANT TUMORS

To date, for patients with EGFRmutations, the majority of
the results were obtained from subgroup analyses. Here,
we summarized the clinical efficacy of ICIs on EGFR-
mutant tumors (Table 1).

2.1 ICI monotherapy

In the KEYNOTE-001 phase I trial, the median
progression-free survival (PFS; 157.5 vs. 56 days) and
OS (559 vs. 120 days) after pembrolizumab treatment were
longer in treatment-naïve EGFR-mutant patients (n = 4)
than in patients previously treated with EGFR-TKIs (n
= 26) [9]. However, the phase II trial of KEYNOTE-001
did not achieve similar results as expected. Twenty-five
treatment-naïve NSCLC patients with EGFR muta-
tion were recruited for treatment, 11 of whom received
treatment with pembrolizumab but the trial was later
terminated because of lack of efficacy [10]. In the Check-
Mate 012 study, nivolumab also did not show superiority
in the EGFR-mutant subgroup as first-line treatment
(overall response rate [ORR] = 14%; median PFS = 1.8
months) [11]. The results of these trials demonstrated
that pembrolizumab monotherapy was not an applicable
first-line treatment for TKI-naïve NSCLC patients with
EGFRmutations.
In the trial of KEYNOTE-010 (NCT01905657), the sub-

group analysis of OS indicated that for patients with
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TABLE 1 Clinical trials of immune checkpoint inhibitors in NSCLC patients with EGFR mutations

Clinical trial Phase Treatment Subgroup Number Outcome
Monotherapy
KEYNOTE-001 II Pembrolizumab EGFR (+) 10 ORR = 0

EGFR (+/−) 495 ORR = 19.4%; mDOR = 12.5 months; mOS =
12 months

CheckMate 012 I Nivolumab EGFR (+) 7 ORR = 14%; mPFS = 1.8 months; DCR = 29%
EGFR (−) 30 ORR = 30%; mPFS = 6.6 months; DCR =

50%
KEYNOTE-010 III Pembrolizumab EGFR (+), PD-L1 ≥1% 86 OS: HR = 0.88, 95% CI = 0.45-1.70);

PFS: HR, 1.79 (0.94–3.42)
EGFR (−), PD-L1 ≥1% 875 OS: HR = 0.66, 95% CI = 0.55-0.80;

PFS: HR = 0.83, 95% CI = 0.71-0.98
CheckMate 057 III Nivolumab vs.

docetaxel
EGFR (+) 44 ORR = 11%;

OS: HR- = 1.18 (favors docetaxel)
EGFR (−) 340 OS: HR = 0.66

OAK III Atezolizumab vs.
docetaxel

EGFR (+), TKI-pretreated 85 ORR = 5%;
OS: HR- = 1.24, 95% CI = 0.71-2.18

EGFR (−) 628 OS: HR = 0.69, 95% CI = 0.57-0.83
BIRCH II Atezolizumab EGFR (+), PD-L1 (TC2/3

or IC2/3,
PD-L1-expressing cells)

13 ORR = 31%;
mOS = 26 months

EGFR (−) 104 ORR = 22%; mOS = 20.1 months
ATLANTIC II Durvalumab EGFR+/ALK+,

TKI-pretreated,
PD-L1<25%

30 mPFS = 1.9 months; mOS = 9.9 months

EGFR-/ALK-, PD-L1<25% 94 mPFS = 1.9 months; mOS = 9.3 months;
EGFR+, TKI-pretreated,
PD-L1≥25%

66 mOS = 16.1 months

EGFR (−), PD-L1≥25% 149 mOS = 10.9 months
Combined with EGFR-TKIs
KEYNOTE-021 II Pembrolizumab +

Erlotinib
EGFR (+), TKI-pretreated 12 ORR = 41.7%; mOS = NR; mPFS = 19.5

months
Pembrolizumab +
Gefitinib

7 ORR = 14.3%; mOS = 13 months; mPFS = 1.4
months

CheckMate 012 I Nivolumab + Elotinib EGFR (+) 21 ORR = 19%
EGFR (+), TKI-pretreated 20 ORR = 15%; mPFS = 16.6 months

TATTON I Durvalumab +
Osimertinib

EGFR (+), TKI-pretreated 23 ORR = 43%

EGFR (+), TKI-naive 11 ORR = 70%
Double immunotherapy
CheckMate 012 I Nivolumab +

Ipilimumab
EGFR (+) 8 ORR = 50%

EGFR (−) 54 ORR = 41%
Combined with chemotherapy
IMpower 130 III Atezolizumab +

Chemotherapy vs.
Chemotherapy

EGFR+/ALK+;
TKI-pretreated

NA OS: 14.4 vs. 10 months, HR = 0.98;
PFS: 7.0 vs. 6.0 months, HR = 0.75

EGFR-/ALK- 679 OS: 18.6 vs. 13.9 months, HR = 0.79;
PFS: 7 vs. 5.5 months, HR = 0.64

CT18 II Toripalimab +
Chemotherapy

TKI-pretreated, without
T790M

40 ORR = 50%; DCR = 87.5%;
mPFS = 7 months

(Continues)
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TABLE 1 (Continued)

Clinical trial Phase Treatment Subgroup Number Outcome
Others
IMpower 150 III ABCP EGFR (+), TKI-pretreated

were included
34 ORR = 71%; mPFS = 10.2 months;

mOS = 26.1 months
ABCP EGFR (−) 359 mOS = 19.5 months
ACP EGFR (+)

TKI-pretreated were
included

45 ORR = 36%; mPFS = 6.9 months;
mOS = 21.4 months

ACP EGFR (−) 350 mOS = 19.0 months;
BCP EGFR (+), TKI-pretreated

were included
44 ORR = 42%; mPFS = 7.1 months; mOS =

20.3 months
BCP EGFR (−) 338 mOS = 14.7 months
ABCP vs. BCP TKI-pretreated with

sensitive EGFR
mutation

26 vs. 32 mOS, 29.4 vs. 18.1 months;
HR = 0.60, 95% CI = 0.31-1.34

Abbreviations: NSCLC, non-small cell lung cancer; EGFR, epidermal growth factor receptor; ORR, overall response rate; mDOR, median duration of response;
mOS, median overall survival; mPFS, median progression-free survival; DCR, disease control rate; PD-L1, programmed death-ligand 1; OS, overall survival; PFS,
progression-free survival; HR, hazard ratio; CI, confidence interval; TKI, tyrosine kinase inhibitor; ABCP, Atezolizumab + Carboplatinc + Paclitaxeld + Beva-
cizumab; ACP, Atezolizumab + Carboplatinc + Paclitaxeld; BCP, Bevacizumab + Carboplatinc + Paclitaxeld; wk, week; AE, adverse event; NA, not applicable.

PD-L1 expression, the clinical benefits of pembrolizumab
in EGFR-mutant patients were far less than those in the
EGFR-wild population [12]. Coincidentally, the efficacy of
nivolumab was not superior to that of docetaxel in the
EGFR-mutant subgroup in the CheckMate 057 trial [13].
The effectiveness of atezolizumab was evaluated in the
OAK trial [14]. Eighty-five NSCLC patients with EGFR
mutations after EGFR-TKI treatment were enrolled, and
the median OS in the atezolizumab group was found to be
significantly shorter than the docetaxel group (10.5months
vs. 16.2 months) [14].

2.2 ICIs combined with EGFR-TKIs
enhanced toxicity

As first-line therapy, 19 previously untreated, EGFR-
mutant NSCLC patients were treated with a combina-
tion of erlotinib or gefitinib with pembrolizumab in the
KEYNOTE-021 trial [15]. Twelve patients received erlotinib
plus pembrolizumab, and the objective response rate and
median PFS were 41.7% and 19.5 months. The adverse
events (AEs) of pembrolizumab plus erlotinib were simi-
lar to those of those who received monotherapy but treat-
ment for patients with pembrolizumab plus gefitinib was
discontinued because five of the patients (71.4%) had grade
3/4 liver toxicity.
As the second-line therapy, CheckMate 012 investigated

the efficacy of nivolumab plus erlotinib [16]. In the EGFR-
mutant subgroup, there was no significant increase in the
rate of AEs andno improvement in clinical benefit [16]. For
patients with disease progression after EGFR-TKI treat-

ment, a multi-arm and phase I trial (TATTON) was estab-
lished to evaluate the efficacy of osimertinib combined
with durvalumab [17]. Among them, five of 23 patients
(22%) developed interstitial lung disease, and 11 patients
(48%) experienced AEs that were no less than grade 3.
Therefore, this study was also discontinued because of
the development of serious AEs. Similarly, recruitment
was terminated for another phase III trial (CAURAL)
that assessed the efficacy of osimertinib plus durvalumab
because of AEs [18].
Serious AEs of ICIs plus EGFR-TKIs were observed in

both the first-line and other lines of treatments. The combi-
nation therapy did not further improve efficacy but posed
more safety risks to patients. Therefore, it is necessary to
perform large cohort studies and safety analyses to verify
efficacy and evaluate toxicity.

2.3 Efficacy of ICIs combined with
chemotherapy

IMpower130 assessed the efficacy of atezolizumab plus
chemotherapy in NSCLC patients who received EGFR-
TKI treatment [19]. Compared with chemotherapy, com-
bination therapy did not lead to significant benefits in
44 patients with EGFR/ALK mutation (OS, 14.4 vs. 10
months, hazard ratio [HR] = 0.98; PFS, 7.0 vs. 6.0 months,
HR = 0.75). CT18 is a phase II study that assessed the
combination of toripalimab and chemotherapy for patients
with EGFR mutations who were resistant to EGFR-TKIs
without T790M mutation [20, 21]. According to the data
presented in the ASCO meeting in 2020 [22], the ORR,
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disease control rate (DRR), and median PFS were 50%,
87.5%, and 7 months, respectively. The ORR for patients
with PD-L1-positive (PD-L1+; TPS ≥ 1%), PD-L1 nega-
tive (PD-L1−), TP53 co-mutation and TP53 wild-type were
60%, 39%, 62%, and 14%, respectively. Notably, the ORR of
patients with TP53 co-mutation was significantly higher
than TP53 wild-type (P = 0.04). Despite the small sam-
ple size, the combination of chemotherapy and ICIs is
worth further exploration. Several clinical trials evaluating
chemotherapy plus ICIs in patients with EGFRmutations
are underway, such as the KEYNOTE-789 and CheckMate-
722 studies (Table 2).

2.4 ICIs combined with chemotherapy
and anti-angiogenic drugs show great
benefits

Vascular endothelial growth factor (VEGF) and EGFR are
critical factors in tumor progression and metastasis, and
share common downstream signaling pathways [23, 24].
Previous studies have shown that theEGFR signaling path-
way can induce VEGF expression to modulate angiogen-
esis [25]. VEGF can regulate the infiltration of immune
cells (such as antigen-presenting cells, T cytotoxic cells,
and regulatory T (Treg) cells and promote the migration of
myeloid-derived inhibitory cells into tumors, thus, promot-
ing the tumor immunosuppressive environment [26, 27]. A
spectrum of preclinical and clinical studies demonstrated
that the anti-VEGF antibody can not only promote the nor-
malization of tumor blood vessels but also relieve inhibi-
tion of the immune microenvironment [27]. The anti-PD-
1/PD-L1 antibody can normalize lymphocyte function and
prevent immune escape [28]. These different mechanisms
provide the theoretical basis for the combination therapy
of the anti-VEGF antibody and anti-PD-1/PD-L1 antibody.
The combination of antiangiogenic with anti-PD-L1 treat-
ment significantly improved CD8+ T cell infiltration com-
pared with antiangiogenic or anti-PD-L1 monotherapy (P
= 0.002) [29].
Bevacizumab, an anti-VEGF antibody, has been

shown to significantly improve OS when combined
with chemotherapy [30]. Additionally, researchers eval-
uated the efficacy of atezolizumab plus bevacizumab
and chemotherapy in the IMpower150 clinical trial
[31]. Patients with no prior chemotherapy were ran-
domly assigned to atezolizumab plus bevacizumab with
carboplatin and paclitaxel (ABCP), atezolizumab plus
carboplatin and paclitaxel (ACP), or bevacizumab plus
carboplatin and paclitaxel (BCP) groups [31]. For patients
with EGFR mutations (n = 123), the median OS of ABCP,
ACP, and BCP groups was 26.1, 21.4, and 20.3 months,

respectively. Compared with BCP, ABCP significantly
improved the median PFS (10.2 months vs. 7.1 months;
HR, 0.56; 95% CI, 0.34-0.91) of the patients. The ORR
and duration of response (DOR) in the ABCP group
were also higher than those in the BCP group (ORR,
73.5% vs. 40.9%; median DOR, 11.1 vs. 4.7 months). For
patients with sensitive EGFR mutation, ABCP showed
significant improvements in terms of PFS (10.3 vs 6.1
months, HR, 0.38; 95% CI, 0.21–0.68) compared with BCP.
The four-drug combination of IMpower150 trial offers
a new option for posterior line therapy in patients with
EGFR mutations. Considering the improved benefits of
the IMpower150 trial, the efficacy of immunotherapy
combined with antiangiogenic drugs is being evaluated in
several clinical trials, which could provide more evidence
for future applications (Table 2).

2.5 Double immunotherapy

PD-1 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) reg-
ulate anti-tumor immune responses in a different but
complementary manner. The combination of nivolumab
and ipilimumab with two cycles of platinum-doublet
chemotherapy for stage IV or recurrent NSCLC patients
without EGFR/ALK mutation has been approved by the
US Food and Drug Administration (FDA) [32]. A subgroup
analysis of the CheckMate 012 study evaluated whether
nivolumab plus ipilimumab could be used as the first-
line treatment for advanced NSCLC [33]. In the EGFR-
mutant group (n = 8), 50% of the patients achieved an
objective response [33]. In another recent study (IND226)
[34], 5 patients receiving EGFR-TKI treatment received
durvalumab and tremelimumab plus platinum-doublet
chemotherapy and achieved partial response (PR). These
trials indicated encouraging efficacy of double ICIs, which
need further confirmation.
Immunotherapy is not suitable as a first-line treat-

ment for NSCLC patients with EGFR mutations. For
patients who failed EGFR-TKI treatment, immunother-
apy monotherapy did not show improved survival benefits
compared with chemotherapy. The combination of EGFR-
TKIs and ICIs did not improve efficacy but increased
toxicity. Nevertheless, the combination of immunother-
apy and chemotherapy primarily showed efficacy. ICIs
combined with chemotherapy and anti-angiogenic drugs
have shownpromising survival benefits in the IMpower150
[31]. Overall, combined therapy may be more suitable
for EGFR-mutant patients. Currently, several clinical tri-
als of immunotherapy combined with other treatments
in NSCLC patients with EGFR mutation are ongoing
(Table 2).
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TABLE 2 Potential mechanisms affecting the efficacy of ICIs on EGFR-mutant tumors

EGFR/EGFR-
TKIs Key indicators Methods Main mechanism and result Reference
EGFR PD-L1 expression ↓ Experimental data EGFR signaling inhibits PD-L1 expression

regulated by IFN-γ via IRF1 in vitro
experiments using human cell lines

[41]

Clinical studies Via the analyses of TCGA and GCLI and
IHC

[43–45]

PD-L1+/TIL+ ↓ Clinical studies NA [45]
PD-L1+ T cells in the blood ↓ Clinical studies NA [50]
PD-L1 expression ↑ Experimental data Via the downstream signaling pathway of

EGFR, such as MAPK/ERK/c-Jun,
Hippo/YAP, or JAK/STAT3

[37–39]

TMB ↓ Clinical studies NA [55, 105,
106]

CD8+ T cells ↓ Experimental data Downregulation of CXCL10 inhibits
effector CD8+ T cell recruitment
mediated by the PI3K-AKT pathway

[45, 61]

Tregs ↑ Experimental data EGFR signaling upregulates
Treg-associated genes

[65]

Experimental data Upregulate CCL22 via the JNK-c-Jun
pathway

[41]

Experimental data Mediate the function of Treg through
amphiregulin

[66, 67]

Experimental data Facilitate the conversion of
CD3+CD4+CD25− T cells to Tregs via
IDO

[68]

MHC class I Experimental data MHC class I ↓; via IFN-γ signaling
pathways and MEK/ERK signaling
pathways

[69–71]

TAMs Experimental data Activate the EGFR signaling via EGF;
Recruiting more Treg cells by
producing chemokines

[72]

CD73 Experimental data Upregulate CD73 expression via the
Ras-RAF-ERK pathway

[35, 78, 79]

Clinical studies Tregs ↑, CD4+ TIL ↓, CD8+ TIL ↓ [78]
Experimental data CD73 blockade significantly inhibited

tumor progression in the
immune-competent mouse model

[35]

EGFR-TKIs PD-L1 expression Experimental data PD-L1 expression↓ [46]
Clinical studies PD-L1 expression↓ [47–49]

Immunological enhancement
(early stage)

Experimental data CD8+ TIL ↑, DCs ↑, M1-like TAMs ↑, Treg
↓

[46]

Immunosuppressive (later
stage)

Experimental data IL-10 ↑, CCL2 ↑, MDSCs ↑ [46]

Abbreviations: ICI, immune checkpoint inhibitor; EGFR, epidermal growth factor receptor; TIL, tumor-infiltrating lymphocyte; PD-L1, programmed death-ligand
1; TIL, tumor-infiltrating lymphocyte; TMB, tumor mutational burden; Treg, regulatory T cell; MHC, major histocompatibility complex; TAM, tumor-associated
macrophage; IFN-γ, interferon-gamma; IRF1, interferon regulatory factor 1; TCGA, The Cancer Genome Atlas; IHC, immunohistochemistry; NA, not applica-
ble; CXCL10, CXC-chemokine ligand 10; CCL2, C-C chemokine ligand 2; MDSC, myeloid-derived suppressor cell; IL-10, interleukin-10; IDO, indoleamine 2, 3-
dioxygenase.
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3 POTENTIALMECHANISMS
UNDERLYING THE LOW EFFICACY OF
ICIS ON EGFR-MUTANT NSCLC

NSCLC tumors with EGFR mutations are characterized
by an immune-inert phenotype, with low PD-L1 expres-
sion, low TMB level, and low infiltration of cytotoxic T
cells [35]. Furthermore, single-cell analysis showed that
the expression of CD73 is upregulated in the tumor cells
of NSCLC with EGFR mutation, both in EGFR-TKI naïve
and TKI-resistant tumors [35]. The EGFR signaling path-
way and EGFR-TKIs affect many aspects of immune effi-
cacy (Table 3).

3.1 Effect of EGFRmutation and
EGFR-TKIs on PD-L1 expression

Previous clinical studies have shown that NSCLC patients
with high PD-L1 expression can obtain more benefits from
ICIs as compared to traditional chemotherapy [33, 36].
PD-L1, as an immune checkpoint protein, is expressed in
tumor cells and tumor-infiltrating immune cells [37]. The
expression of PD-L1 is affected by two different mecha-
nisms: intrinsic expression and acquired expression. EGFR
mutation can upregulate PD-L1 expression in NSCLC cells
via the downstream signaling pathway of EGFR, such
as mitogen-activated protein kinase/extracellular signal-
regulated kinases/c-Jun (MAPK/ERK/c-Jun), Hippo/Yes-
associated protein (Hippo/YAP), and Janus kinase/signal
transducer and activator of transcription 3 (JAK/STAT3)
signaling pathway [38–40]. In contrast, in vitro studies
have demonstrated that EGFR signaling inhibited acquired
PD-L1 expression by inhibiting IFN-γ stimulation, which
is regulated by interferon regulatory factor-1 (IRF1) sig-
naling [41]. In preclinical studies, the regulation of PD-L1
expression by EGFR signaling remains contradictory. In
addition, some retrospective studies and analyses of the
Cancer Genome Atlas (TCGA) and the Guangdong Lung
Cancer Institute indicated that PD-L1 expression was sig-
nificantly upregulated in EGFR wild-type tumors than in
EGFR-mutant tumors [42–45].
In vitro cell line experiments showed that EGFR-TKIs

downregulated PD-L1 expression by inhibiting EGFR sig-
naling [46]. Nevertheless, some clinical analyses demon-
strated that PD-L1 expression showed an upward trend
after treatment with EGFR-TKIs [47, 48]. After EGFR-TKI
treatment (n = 128), the proportion of patients with high
PD-L1 expression (stain intensity of tumor cells ≥ 50%)
increased from 14% to 28% (P = 0.001) [48]. Gainor et al.
[49] also demonstrated that 21% of patients (n = 12) had
increased PD-L1 expression in their tumor tissues after
resistance to EGFR-TKIs. PD-L1+ T cells in the blood were

also significantly increased after one week of EGFR-TKI
treatment [50]. Beyond that, most patients who had pri-
mary resistance to EGFR-TKI showed had PD-L1 expres-
sion and PD-L1+CD8+ T cell infiltration [51, 52]. This may
be explained by the association between EGFR-TKI resis-
tance and PD-L1 upregulation. A retrospective study [48]
analyzed PD-L1 expression in 138 patients with EGFR-
mutated NSCLC who underwent re-biopsy after progres-
sion during EGFR-TKI treatment [51, 52]. After EGFR-TKI
treatment, patients with high PD-L1 expression had longer
OS than patients with low expression from PD-1 inhibitor
(7.1 vs. 1.7 months, P = 0.0033) [48].

3.2 Tumor mutational burden (TMB)

TMB is defined as the total number of somaticmutations in
the entire tumor genome, which is an emerging biomarker
for predicting the prognosis after ICI treatment. Com-
pared with EGFR wild-type patients, patients with EGFR
mutations had a lower level of TMB. The median TMB
in patients with EGFRmutation was 3.8 non-synonymous
mutations/Mb, much lower than that of wild-type patients
(7.4 non-synonymous mutations/Mb) [53]. In particular,
sensitive EGFR types had significantly lower TMB levels
and immunogenicity [45].
The reduced TMB of NSCLC tumors without EGFR

mutation resulted in poor efficacy of ICIs [54, 55]. TMB
may be one potential explanation for the poor efficacy of
ICIs in EGFR-mutant tumors. However, there is no con-
sistent standard for the detection, calculation method and
cut-off value of TMB. Further determining the system stan-
dard of TMB as a biomarkermight help to select the appro-
priate population.

3.3 Tumor microenvironment (TME)

EGFR-mutant tumors have unique TME characteristics
(Figure 1). TME is the internal environment for tumor
growth and development, and it is crucial for the immune
regulatory network, which includes myeloid cells, T lym-
phocytes, cytokines, and exosomes. Treg cells, myeloid-
derived suppressor cells (MDSCs), and some cytokines
often show immunosuppressive effects. Based on the dif-
ference in TME, tumors can be divided into “cold tumor”
and “hot tumor”.
High CD8+ T infiltration is believed to be associated

with a good prognosis of NSCLC, as evidenced by several
studies [49, 56, 57]. CXC-chemokine ligand 10 (CXCL10)
can recruit effector CD8+ T cells via the phosphatidylinosi-
tol 3‑kinase (PI3K)/protein kinase B (AKT) signaling path-
way [58, 59]. EGFR signaling downregulates CXCL10, thus,
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inhibiting the recruitment of effector CD8+ T cells [60].
Nevertheless, tumors with EGFR mutations often showed
lower infiltration of CD8+ tumor-infiltrating lymphocytes
(TILs) [45, 61] which can lead to immune deficiency and
poor prognosis [62]. Furthermore, EGFR-mutant tumors
showed a higher ratio of PD-L1−/TIL− but a lower ratio of
PD-L1+/TIL+ in comparison to EGFR-wild tumors, which
can lead to low responses to ICIs [45].
Tregs are highly infiltrated in tumors with EGFRmuta-

tions [63] and can attenuate the anti-tumor immune
response mediated by natural killer (NK) cells, CD4+ T
cells, and CD8+ T cells by secreting interleukin-10 (IL-
10), IL-35, and transforming growth factor-β (TGF-β) [64].
The activation of EGFR mutation can upregulate Treg-
associated gene expression and recruit Treg cells by upreg-
ulating the C-C class chemokines (CCL22) via the JNK-
c-Jun pathway, as observed in a preclinical model [60,
65]. Preclinical studies have also shown showed that the
EGFR/glycogen synthase kinase 3 (GSK-3)/forkhead box
protein 3 (Foxp3) axis mediated the inhibitory immune
function of Treg through amphiregulin and promoted
tumor progression [66, 67]. In addition, exosomes contain-
ing EGFR promoted the production of indoleamine 2,3-
dioxygenase secreted by DCs, which facilitated the conver-
sion of CD3+CD4+CD25+ T cells to Tregs [68].
Other factors can also affect the TME. The major his-

tocompatibility complex (MHC) plays an important role
in antigen presentation. Previous studies demonstrated
that IFN-γ signaling pathways and MEK/ERK signaling
pathways could downregulate the expression of MHC-I
and MHC-II [69, 70]. Compared with wild-type tumors,
EGFR-mutant tumors showed lower expression of human
leukocyte antigen-B [71]. Tumor-associated macrophages
(TAMs) can produce EGF which activates the EGFR sig-
naling pathway and promotes tumor growth [72].
EGFR-TKIs can relieve the inhibition of EGFR on T

cells, weaken the function of Treg cells, enhance the pro-
duction of IFN-γ, and potentiate the expression of MHC-I
andMHC-II [39, 63, 73]. However, the effect of EGFR-TKIs
on the TME may be dynamic. In a murine model, Jia et al.
[46] demonstrated the dynamic effect of EGFR-TKIs. They
observed that the effect of EGFR-TKIs on TME was bene-
ficial in the early stage but immunosuppressive in the late
stage. At the early stage, the numbers of CD8+ T cells, DCs,
and M1-like TAMs showed an increasing trend while Treg
infiltration decreased. In the later stage of EGFR-TKI treat-
ment, the increased secretion of IL-10 and C-C chemokine
ligand 2 (CCL2) promoted the migration and activation of
MDSCs, thus suppressing immunity and promoting angio-
genesis and metastasis [46, 64]. Short-term low-dose expo-
sure to erlotinib led to immune-mediated cytotoxicity in
EGFR-mutant tumors and tumor lysis of NK cells and
antigen-specific T cells. However, this enhanced immune-
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F IGURE 1 The immune characteristics of tumors with EGFR mutation. EGFR-mutant tumors have low infiltration of CD8+ T cells and
high expression of Treg and CD73. Treg cells can secrete IL-10, IL-35, and TGF-β to reduce anti-tumor immune responses mediated by NK
cells and CD8+ T cells. DCs can secrete IDO, which promotes the conversion of CD3+CD4+ CD25-T cells to Tregs. CD73 promotes ATP
decomposition into ADO. A2A is an ADO receptor that is widely expressed in lung cancer. The CD73-ADO axis promotes the efficacy of Tregs
and MDSCs. ADO combined with A2AR also inhibits T cell signal transduction, thus impairing anti-tumor immunity. Moreover,
EGFR-mutant tumors secrete exosomes containing EGFR mutations to promote distant metastasis. Abbreviations: EGFR, epidermal growth
factor receptor; PD-L1, programmed death-ligand 1; ADO, adenosine; PD-1, programmed cell death protein 1; DC, dendritic cell; IDO,
indoleamine 2, 3- dioxygenase; Treg, regulatory T cell; NK, natural killer; A2AR, adenosine A2A receptor; MDSC, myeloid-derived suppressor
cell

mediated cytotoxicity disappeared after long-term treat-
ment with erlotinib [74]. The above study provides the
rationale for the treatment of ICIs and erlotinib before
EGFR-TKI resistance. In addition, it is worth investigating
whether the toxicity will disappear as the beneficial effects
of combination therapy diminish.
CD73, which promotes immune escape by participating

in the decomposition of adenosine triphosphate (ATP) into
adenosine (ADO), is highly expressed in various tumors
and associated with poor prognosis [75–77]. The expres-
sion of CD73 is upregulated in tumors with EGFR muta-
tions [35, 78]. Likewise, in tumors with EGFR mutations,
the top upregulated genes, such as ecto-5’-nucleotidase
(NT5E) and adenosine A1 receptor (ADORA1), belong to
the CD73-ADO pathway [35]. In the downstream signaling

pathway of EGFR, the Ras-RAF-ERK pathway directly reg-
ulated CD73 expression through ERK1/2 [79]. The CD73-
ADO axis promoted the efficacy of Tregs andMDSCs, thus,
impairing antigen recognition and tumor-killing functions
[64]. Patientswith a high expression of CD73 showed lower
CD4+ TIL and CD8+ TIL than those with low expres-
sion [78]. Le et al. [35] demonstrated that CD73 blockade
significantly inhibited tumor progression in an immune-
competent mouse model of EGFR-mutant lung cancer.
High expression of CD73 could predict the efficacy of ICIs
in patients with EGFR mutations whereas CD73 expres-
sion had no significant effect on efficacy in patients with-
out EGFR mutations [80]. A2A is a G-protein-coupled
ADO receptor that is widely expressed in lung cancer.
In preclinical models, A2AR (A2A adenosine receptor)
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blockade combined with ICIs could increase the infiltra-
tion of CD8+TILs to enhance the secretion of IFN-γ and
granzyme-B [81]. A2AR inhibitors are not only involved in
preventing negative signal transduction of T cells but also
inhibit tumor cells directly [82].
In conclusion, the lower expression of PD-L1, the lower

level of TMB, and the upregulation of the immunosup-
pressive environment are the reasons for the disadvantage
of EGFR-mutant patients with ICIs. The effect of EGFR-
TKIs on the TMEmay be dynamic. Timely monitoring the
dynamic changes and selecting appropriate timing win-
dowsmay expand the population suitable for immunother-
apy. Targeting immunoregulatory factors in the TME can
also improve the efficacy of immunotherapy.

4 FUTURE DIRECTIONS AND
CHALLENGES

4.1 Identify the patients who can
benefit from immunotherapy

The efficacy of ICIs in NSCLC patients with EGFR
mutations is associated with its heterogeneous immune
characteristics. In addition, the characteristics of the
immune microenvironment are influenced by many fac-
tors. Although the overall benefits of immunotherapy in
EGFR-mutant patients are poor, some patients still show
superiority. It is vital to identify the patients who can ben-
efit from immunotherapy.

4.1.1 EGFR subtypes have different
responses to ICIs

Distinct EGFR mutation types have different clinical out-
comes compared to ICIs. EGFR exon 19 deletions and
EGFR L858R are the two most common EGFR muta-
tions. Other EGFR mutations are called rare mutations
and account for 10%-20% of all EGFR mutations such as
G719X and exon 20 insertions [83]. Patients with EGFR
L858R-mutant tumors had similar response rates (22% vs.
16%, P = 0.42) and OS (HR = 0.917, 95% confidence inter-
vals [CI] = 0.597-1.409, P = 0.69) as those with wild-type
[53]. Nevertheless, EGFR exon 19 deletions exhibited sig-
nificantly reduced benefits than wild type (ORR, 7% vs.
22%; OS, HR = 0.69, P = 0.03) [53]. The efficacy of ICIs
varies depending on the level of TMBandT cell infiltration.
Similarly, clinical analysis indicated that EGFR L858R-
mutant tumors had higher TMB levels (P < 0.001) and
CD8+PD-1+ T cell infiltration than EGFR exon 19 deletions
[84]. The level of TMB was reported to be positively cor-
related with age [85]. Furthermore, EGFR L858R-mutant

is common in the elderly and may account for higher
TMB [53, 60].
A retrospective study involving 27 patients indicated that

patients with uncommon EGFRmutations (such as G719X
and exon 20 insertion) could obtain more clinical bene-
fits from ICIs than thosewith commonmutations. Patients
with the uncommon subtype had higher ORR, DCR, and
median PFS (ORR, 71% vs. 35.7%, P = 0.14; DCR, 57% vs.
7%, P < 0.01; mPFS, 256 vs. 50 days, HR = 0.288) [86]. For
patients with EGFR G719X mutations, the ORR and PFS
of ICIs and afatinib (ORR = 77.8%; median PFS = 13.8
months) were numerically similar [87].Tumors with EGFR
G719Xmutations had higher TMB thanEGFR exon 19 dele-
tions [84]. High PD-L1 expression and CD8+ TILs had also
been observed [88]. EGFR exon 20 insertion mutations are
common in non-smokers and women [89]. The TMB was
similar to common sensitizing EGFR mutations (mean,
4.3; range, 0-40.3 mutations/Mb), and the positive expres-
sion rate of PD-L1 was 37%-80% in NSCLC with EGFR
exon 20 insertion [90]. Compared to classicEGFRmutants,
EGFR exon 20 insertion demonstrated significantly longer
PFS (HR = 0.45, P = 0.002) and OS (HR = 0.2, P < 0.001)
[91].
Based on the above studies, EGFR L858R, G719X and

exon 20 insertions showed potential to benefit from ICIs.
However, current clinical and preclinical evidence for each
mutation type is insufficient. In particular, the understand-
ing of the biology of rare mutations is inadequate. For
instance, EGFR exon 20 insertions are diverse and often
associated with co-mutations [83]. Currently, the benefits
of EGFR-TKIs and immunotherapy are limited to patients
with EGFR exon 20 insertions. Although the IMpower130
and IMpower150 phase III clinical trials included some
patients with exon 20 insertions, the number was too lim-
ited to draw conclusions.
Patients receiving EGFR-TKIs often develop acquired

resistance after 9-14 months of treatment, and about 50%-
60% of this resistance is due to T790M mutations. Patients
with T790M-positive tumors could benefit from osimer-
tinib treatment. Compared with T790M-positive patients,
patients without T790M mutation had higher PD-L1 lev-
els, higher infiltration of CD8+ TILs, and lower infiltration
of FOXP3+ TILs [62]. In patients who received EGFR-TKI
treatment, PFS and ORR of patients without T790Mmuta-
tion were higher than T790M-positive patients (P = 0.03;
P = 0.21, respectively) [86]. Haratani et al. [62] also indi-
cated that T790M-negative patients with EGFR-TKI treat-
ment failure tended to acquire more clinical benefits from
nivolumab. The median PFS, ORR and DOR in patients
without T790M mutation was longer or higher numeri-
cally than those with T790M mutation (2.1 months vs. 1.3
months, HR = 0.48, 95% CI: 0.20-1.24; 24% vs. 13%, P =

1.000; 47% vs. 13%, P = 0.182) [62].
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The efficacy of ICIs varies depending on the hetero-
geneity of the immune microenvironment of distinct
EGFR mutations. At present, there are few studies on the
immune characteristics and TME between different muta-
tions. To understand themolecularmechanisms that affect
the efficacy of ICIs among different types of EGFR muta-
tions, a comparison of immunological analyses between
the various types is necessary.

4.1.2 Patients with high PD-L1 expression
might benefit from ICIs

PD-L1 expression was generally downregulated in patients
with EGFR mutations. Moreover, it is extremely rare
for PD-L1 ≥ 50% to coexist with driver mutations [92].
However, some studies have shown that a small num-
ber of patients with high PD-L1 expression benefited
from immunotherapy. The ATLANTIC trial assessed the
efficacy of durvalumab in EGFR-mutant patients who
received EGFR-TKIs [93]. For EGFR-mutant patients with
at least 25% of tumor cells expressing PD-L1 (n = 66),
durvalumab was not associated with a prolongation of
the PFS and ORR (median PFS, 1.9 vs. 3.3 months; ORR,
14.1% vs. 16.4%) but prolonged the OS (16.1 vs. 10.9 months)
of the EGFR-mutant patients compared to EGFR−/ALK−
patients [94]. The BIRCH trial showed that in patients
with PD-L1 expression of at least 5% on tumor cells or
immune cells and treated with atezolizumab as first-line
therapy, ORR was 31% (4/13) in the EGFR-mutant group
and 22% (23/104) in the wild-type group [95]. Although
the two studies mentioned above treatments, the detec-
tion and evaluation of PD-L1 expression were inconsis-
tent. They showed that EGFR-mutant patients with high
PD-L1 expression might benefit from ICIs. Detecting the
expression of PD-L1 can still predict the efficacy of ICIs for
patients with EGFR/ALKmutations.

4.2 Combination treatment

To date, no clinical trials have shown the appropri-
ate efficacy and safety of EGFR-TKIs combined with
immunotherapy. A retrospective study reported that
patients who received EGFR-TKIs and progressed within
6 months had more survival benefits from subsequent
immunotherapy [96]. Similarly, a case report demon-
strated that two patients with EGFR-TKI resistance had
notable responses with EGFR-TKI re-challenge immedi-
ately after nivolumab [97]. Experimental data showed
that EGFR-TKIs could not only reduce the infiltration
of immunosuppressive cells but also promote the forma-
tion of an immunosuppressive environment. This dynamic

effect of EGFR-TKIs may be a key factor in combination
therapy outcomes.
Targeting the CD73-ADO axis includes the use of small-

molecule inhibitors or human monoclonal antibodies to
inhibit ADO production or neutralize ADO. A2AR block-
ade combined with PD-1/PD-L1 or CTLA-4 inhibitors can
increase infiltration of CD8+ TILs to enhance anti-tumor
response [81, 82]. Therefore, the combination of A2AR
blockade combined with ICIs may contribute to the tran-
sition from “cold tumors” into “hot tumors”. Clinical trials
evaluating the efficacy of several A2AR inhibitors and anti-
CD73 monoclonal antibodies are in progress for NSCLC
patients with EGFR mutations, such as the NCT02503774
(AZD4635), NCT02403193 (PBF-509), and NCT02503774
(MEDI9447, oleclumab) trials.
Radiotherapy plays an important role in anti-tumor

immunity by participating in various immunomodulatory
effects [98]. Radiotherapy can activate immune pathways
by producing the abscopal effect and promoting the release
of cytokines to turn “cold” tumors into “hot” tumors
[99]. Immunotherapy can also boost the abscopal effect to
produce a powerful anti-tumor response to radiotherapy
combined with immunotherapy [100]. NCT04517526 and
NCT04013542 are ongoing clinical studies evaluating the
efficacy of immunotherapy combinedwith radiotherapy in
patients with EGFRmutations (Table 2).
VEGF inhibitors are also an option for combination ther-

apy. The IMpower 150 trial [31] showed that patients with
EGFR mutations had improved treatment efficacy with
ICIs in combination with anti-VEGFmonoclonal antibody
(mAb). The four-drug combination in the IMpower150
trial offers a new option for other lines of treatments in
patients with EGFRmutations. These results strongly sug-
gest that bevacizumab has important value for improv-
ing the immune microenvironment and promoting the
efficacy of ICIs. The reduction in Treg cells and MDSCs
through VEGF inhibition may lead to immunological sen-
sitization [101]. In addition, chemotherapy can reduce
tumor load, promote the release of tumor antigens, and
suppress immunosuppressive cells, thereby, regulating the
immune microenvironment. However, the precise mech-
anisms underlying these effects remain unclear. There-
fore, it is necessary to explore the mechanisms in pre-
clinical models. Several clinical trials of immunother-
apy in combination with anti-VEGF and chemother-
apy are underway (Table 2) and could provide clearer
evidence.
Cetuximab, an anti-EGFRmAb, combinedwith ICIs has

been reported to enhance immune responses in other solid
tumors expressing EGFR [102]. The combinations ofmulti-
kinase inhibitors and ICIs have also shown promising out-
comes in gastric cancer [103]. These results may provide
ideas for exploring new applications of immunotherapy to
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improve antitumor efficacy in NSCLC with EGFR muta-
tions.
The blocking of abnormal increases in the EGFR sig-

naling pathway caused by genetic changes may trans-
form immunosuppressive tumors into an inflammatory
microenvironment, providing the basis for combination
immunotherapies. However, the selection of appropriate
drugs, timing and treatment schemes still need further dis-
cussion. One EGFR-mutant patient who progressed after
2 months of EGFR-TKI treatment received four cycles of
pembrolizumab combined with chemoradiotherapy and
subsequently achieved complete response [104]. Future
researchmay focus on ICIs combinedwith other treatment
approaches, such as EGFR-TKIs, chemotherapy, radiother-
apy, and other targeted therapies.

4.3 Others

In addition, to maximize the role of immunotherapy,
researching potential predictive markers is imperative. A
single biomarker, such as PD-L1 or TMB, may be insuf-
ficient to provide prognostic value. The integration of
biomarkers or the selection of different biomarkers for dif-
ferent patients will be a new potential option in the future.

5 CONCLUSION

Based on the current studies, NSCLC patients with EGFR
mutations obtain little benefit from ICIs. EGFR-TKIs
remain the first-line treatment choice for patients with
EGFR mutations. The EGFR signaling pathway not only
directly regulates tumor cells but also affects the tumor
microenvironment, thus, establishing an immunosup-
pressive microenvironment to achieve tumor avoidance.
Therefore, it is very important to reverse the immunosup-
pressive microenvironment to improve the sensitivity of
ICIs. Current studies have mainly focused on EGFR-TKIs,
anti-CD73mAbs, and VEGF inhibitors. Of these, combina-
tion therapy with VEGF inhibitors seems themost promis-
ing approach.
To the best of our knowledge, the current analyses of

immunotherapy forNSCLCpatients withEGFRmutations
are limited. Most analyses were based on subgroup analy-
sis, randomized controlled trials, or observational studies.
More clinical evidence and validation are needed to deter-
mine the efficacy of immunotherapy and identify who
can benefit from ICIs. Currently, several clinical studies
are underway in patients with EGFR mutations, involv-
ing multiline therapy and combination therapies. Explor-
ing the appropriate combination and application of ICIs
is critical not only for EGFR-mutated NSCLC patients but

also for immunotherapy in other solid tumors containing
driver mutations.
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