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EDITORIAL

A newly discovered role of metabolic enzyme PCK1
as a protein kinase to promote cancer lipogenesis

Lipid metabolism, in particular fatty acid and cholesterol
synthesis, is essential to convert nutrients into metabolic
intermediates for membrane biosynthesis, energy storage
and the generation of signaling molecules. Tumor cells
maintain high level of lipid metabolism for rapid cell pro-
liferation [1-4]. Transcription of genes required for fatty
acid and cholesterol synthesis and cholesterol uptake is
controlled by membrane-bound transcription factor sterol
regulatory element-binding proteins (SREBPs), including
SREBP-1a, SREBP-1c/ADD1 and SREBP-2 isoforms [5].
The function of SREBPs is mainly regulated by an escort
protein (the SREBP cleavage-activating protein [SCAP])
and endoplasmic reticulum (ER) anchor proteins (insulin-
induced genes [Insigs]), during the feedback loop of
cholesterol synthesis [6-8]. Under sterol-depleted condi-
tions, SCAP and SREBPs complex is captured by COPII-
mediated vesicles and transported from the ER to the
Golgi apparatus [7, 9], where the SREBPs are proteolyt-
ically processed by Site-1 protease (S1P) and Site-2 pro-
tease (S2P) to yield active amino-terminal fragments that
enter the nucleus for gene transcription [10, 11]. Under
high intracellular sterol conditions, abundant cholesterol
in the ERmembrane binds to SCAP, induces its conforma-
tional change, and enables it to bind to Insigs. When SCAP
interacts with Insigs, COPII proteins can no longer bind to
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a hexapeptide sorting signal (MELADL) in SCAP, leading
to the retention of the SREBP-SCAP complex in the ER [6,
12, 13].
Two Insig isoforms, Insig1 (277 amino acids) and Insig2

(225 amino acids, sharing 69% amino acid identity with
Insig1), contain 6 transmembrane-spanning regions and
differ in their cytosolic N-termini [14, 15]. Insig proteins
do not bind to cholesterol. Instead, they bind to oxysterols,
which are cholesterol derivatives-including 22-, 24-, 25-,
and 27-hydroxycholesterol, in the central cavities within
their transmembrane domains. Insigs interact with SCAP
via transmembrane domains 3 and 4 [6, 16-18]. The binding
of oxysterols to Insigs is crucial for the interaction between
Insigs and SCAP, which does not bind to oxysterols [9, 17,
18]. Thus, cholesterol and oxysterols block COPII bind-
ing to SCAP by binding to different intracellular recep-
tors, cholesterol to SCAP and oxysterols to Insigs. Simi-
lar to the effect of cholesterol deprivation, low oxycholes-
terol conditions disrupt the Insigs-SCAP interaction, lead-
ing to SREBP activation and concomitant Insigs ubiquity-
lation and degradation [9, 17-19]. In addition to its function
to hinder the ER-to-Golgi transport of the SREBP-SCAP
complex, Insigs promote the degradation of 3-hydroxy-3-
methylglutaryl-CoA reductase (HMGCR), thereby reduc-
ing cholesterol synthesis [10]. Although it is well known
that the interaction between Insigs and the SREBP-SCAP
complex is regulated by intracellular sterol levels, whether
the binding of oxysterol to Insigs is regulatedwithout alter-
ation of oxysterol levels for SREBP activation in response
to oncogenic signaling remains elusive.
Cancer cells favor glycolysis to provide energy and

metabolic intermediates for synthesis lipids, proteins,
and nucleic acids regardless of the presence or absence of
oxygen, and this phenomenon is referred to as the War-
burg effect [20, 21]. Gluconeogenesis, which in essence
is the reverse pathway of glycolysis that results in the
generation of glucose from certain non-carbohydrate
carbon substrates, is in principle suppressed in cancer
cells with highly activated glycolysis [20]. Consistently,
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forced expression of phosphoenolpyruvate carboxykinase
(PCK or PEPCK), which has a cytoplasmic phospho-
enolpyruvate carboxykinase 1 (PCK1) and a mitochondrial
PCK2 isoforms and is a rate-limiting enzyme of glu-
coneogenesis that converts oxaloacetate and GTP into
phosphoenolpyruvate (PEP) and CO2 by addition of
phosphate to pyruvate with concomitant aldol cleavage
of CO2 from oxaloacetate [22], inhibits HCC development
by increasing gluconeogenesis, decreasing glycolysis, and
enhancing energy and oxidative stress [23, 24]. However,
upregulated expression of PCK1 or PCK2 was detected in
colon cancer [25], lung cancer [26], melanoma [27], and
lymphoma [25], and metastatic breast cancer cells [28].
These findings imply that PCK has non-gluconeogenic
function in regulating tumor development.
We recently, for the first time, reported that PCK1

translocates to the ER and acts as a protein kinase phos-
phorylating Insigs for activating SREBP-dependent lipo-
genesis and promoting tumor growth [29]. To determine
how cancer cells regulate SREBP activation under sterol-
sufficient conditions, we treated Huh7 human hepatocel-
lular carcinoma (HCC) cells with the insulin-like growth
factor 1 (IGF1), which induces the signaling that is criti-
cal for HCC development [30]. Mass spectrometric anal-
yses of immunoprecipitates of Insig1 and Insig2 showed
that these proteins bound to PCK1. Cell fractionation anal-
yses revealed that a small portion of PCK1 translocated to
the ER upon IGF1 stimulation, and this translocation was
blocked by AKT inhibition and elicited by AKT activation.
Co-immunoprecipitation analyses of HCC cells and an in
vitro GST pull-down assay with purified proteins revealed
that AKT1 bound directly to PCK1. Activated AKT1 in
vitro and IGF1-activated AKT inHCC cells phosphorylated
PCK1 at evolutionally conserved S90. PCK1 S90A mutant
expressed HCC cells were resistant to IGF1- or active
AKT1-induced PCK1 S90 phosphorylation and ER translo-
cation. In contrast, the phosphorylation-mimicking PCK1
S90E mutant accumulated in the ER without IGF1 stimu-
lation indicated that AKT1-mediated PCK1 S90 phospho-
rylation is required and sufficient for the ER translocation
of PCK1. Importantly, PCK1 S90 phosphorylation reduced
PCK1’s binding affinity to oxaloacetate and its enzymatic
activity to produce phosphoenolpyruvate. Thus, AKT-
mediated PCK1 phosphorylation inhibited the canonical
function of PCK1 in gluconeogenesis and induced and ER
translocation. Notably, only AKT-phosphorylated purified
wide-type PCK1, but not purified PCK1 S90A, interacted
with purified Insig1/2. The expression of Insig1/2 trunca-
tion mutants revealed that the Insig1/2 loop 1 bound to
PCK1 [29]. These results indicate that PCK1 S90 phospho-
rylation is required for PCK1’s binding to Insig1/2.
We and other groups previously demonstrated that

metabolic enzymes can possess protein kinase activity

to phosphorylate a variety of protein substrates for crit-
ical regulation of cellular activities [2, 31, 32]. The gly-
colytic enzyme pyruvate kinase M2 (PKM2) uses PEP as
the phosphate donor to phosphorylate histone H3 [2, 33],
STAT3 [31], Bub3 [34], myosin light chain 2 (MLC2) [35],
AKT1 substrate 1 (AKT1S1) [31], Bcl-2 [31], synaptosome-
associated protein 23 (SNAP-23) [36], andCtBP-interacting
protein (CtIP) [37]. Accordingly, PKM2 regulates the War-
burg effect, tumor cell migration and metastasis, gene
expression, mitosis, and cytokinesis progression, cell pro-
liferation, apoptosis, DNA damage responses, and exo-
some secretion [2, 31, 36, 38]. The glycolytic enzyme
phosphoglycerate kinase 1 (PGK1) uses ATP as a donor
and phosphorylates pyruvate dehydrogenase kinase 1
(PDHK1) and Beclin1 to suppress mitochondrial pyruvate
metabolism and promote autophagy, respectively [39-41].
Thus, the two ATP-producing glycolytic enzymes can have
protein kinase activities. In addition to glycolytic enzymes,
we demonstrated that ketohexokinase-A (KHK-A) acts as
a protein kinase and uses ATP to phosphorylate phospho-
ribosyl pyrophosphate synthetase 1 (PRPS1) for promoting
the de novo nucleic acid synthesis andHCC formation and
p62 for activating Nrf2-dependent antioxidant responses
[42, 43]. In line with our previous report that metabolic
enzymes could function as protein kinases, we revealed
that PCK1 used GTP as the phosphate donor and phos-
phorylated Insig1 S207 and Insig2 S151 in vitro. This phos-
phorylation induced by IGF1 was abolished by knock-in
expression of PCK1 S90A [29], demonstrating that AKT-
phosphorylated PCK1 acts as a protein kinase to phospho-
rylate Insig1/2.
The significance of PCK1-mediated Insig1/2 phosphory-

lation was revealed by reduced binding affinity of PCK1-
phosphorylatedWT Insig1/2 or phospho-mimicking Insig1
S207E and Insig2 S151E, but not their phosphorylation-
dead mutants, to [3H] 25-hydroxycholesterol. Conse-
quently, this Insig1/2 phosphorylation resulted in the
disruption of Insig-SCAP interaction, SCAP-SREBP1/2
ER-to-Golgi translocation, SREBP1/2 cleavage, nuclear
SREBP1/2 accumulation, and SREBP1/2 transcriptional
activation. Consequently, this signaling cascade induced
expression of SREBP1-targeted fatty acid and triglyc-
erides synthesis genes, including fatty acid synthase
(FASN), acetyl-CoA carboxylase-1 (ACC1), stearoyl-CoA
desaturase-1 (SCD1), glycerol-3-phosphate acyltransferase
(GPAT), and SREBF1 (encoding SREBP1), and SREBP2-
mediated transcription of cholesterol biogenesis-related
genes, such as HMGCR, HMGC synthase (HMGCS),
low-density lipoprotein receptor (LDLR), and squalene
synthase (SS). As expected, PCK1-mediated Insig1/2
phosphorylation increased the incorporation of [14C]
glucose into triglycerides and fatty acids. Importantly, this
regulation was induced by AKT activation mediated by
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F IGURE 1 PCK1 acting as a protein kinase phosphorylates INSIG1/2, thereby activating SREBP1/2-dependent lipogenesis for tumor
development
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expression of K-RAS G12V, active IGF1 receptor (IGF1R)
V922E mutant, active epidermal growth factor receptor
(EGFR) vIII mutant, and platelet-derived growth factor
(PDGF) stimulation, which occurred in HCC cells, human
melanoma cells, human glioblastoma cells, and human
non-small cell lung cancer cells. Thus, PCK1-mediated
lipogenesis is a general phenotype in different types of
cancer in response to the expression ofmultiple oncogenes
and activation of different receptor tyrosine kinases. In
addition, phosphorylation of AKT, PCK1 S90, Insig1 S207,
and Insig2 S151 as well as SREBP1 cleavage were dramat-
ically enhanced in normal liver from the mice refed with
glucose after fasting, suggesting that blood glucose level
in vivo regulates PCK1-mediated Insig1/2 phosphorylation
and SREBP1 activation in the liver, revealing a potential
mechanism underlying overnutrition-promoted non-
alcoholic fatty liver diseases. Notably, phosphorylation
of AKT, PCK1 S90, Insig1 S207, and Insig2 S151 as well
as SREBP1 cleavage were substantially increased in HCC
cells compared with normal human hepatocytes [29],
supporting that HCC cells with highly activated AKT have
much elevated PCK1-mediated SREBP1 activation.
As expected, knock-in expression of Insig1 S207A/Insig2

S151A or PCK1 S90A inhibited proliferation of HCC cells
and active IGF1R V922E- or active AKT-induced liver
tumor growth in mice. In addition, dominant nega-
tive IGF1R L1003R-inhibited tumor growth with reduced
PCK1 and Insig1/2 phosphorylation and nuclear SREBP1
accumulation were partially reverted by PCK1 S90D or
Insig1 S207D/Insig2 S151D expression, supporting that
PCK1-mediated Insig1/2 phosphorylation and subsequent
SREBP1 activation promotes HCC development. The clin-
ical relevance of PCK1-regulated SREBP1 activation was
demonstrated by analyses of primary HCC and adjacent
normal tissue samples, which showed that PCK1 S90
and Insig1 S207/Insig2 S151 phosphorylation and nuclear
SREBP1 expression were markedly increased in the HCC
specimens and correlated with each other in HCC tumors.
Importantly, the levels of PCK1 S90, Insig1 S207/Insig2
S151 phosphorylation, and nuclear SREBP1 expression in
HCC samples were inversely correlated with overall sur-
vival durations of HCC patients [29].
In summary, we identified PCK1 as a new member of

the protein kinome, using GTP, rather than ATP, as a
phosphate donor. AKT-mediated PCK1 S90 phosphory-
lation not only reduced the metabolic activity of PCK1
but also translocated it to the ER, and both regulations
reduced its function in gluconeogenesis. Importantly,
S90-phosphorylated PCK1 acts as a protein kinase and
phosphorylates Insig1/2 thereby reducing oxysterol’s
binding to Insig1/2 and activating SREBP1/2-mediated
lipogenesis including synthesis of fatty acids, triglycerides,
and cholesterol for tumor growth (Figure 1). Thus, our

results elucidate an instrumentally integrated regulation
between gluconeogenesis and lipogenesis and uncover a
criticalmechanism bywhich oncogenic signaling activates
SREBP-dependent lipid synthesis in the tumor microenvi-
ronment that has normal levels of oxysterol. This finding
underscores the significance of the non-canonical func-
tion of PCK1 in tumor development and the potential
to target the protein kinase activity of PCK1 for cancer
treatment.
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