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Exhaled breath diagnostics of lung and gastric cancers in China
using nanosensors
Dear Editor,

Breath analysis is a promising diagnostic approach for var-

ious conditions [1, 2]. It is based on the identification of

volatile organic compounds (VOCs) emitted in the breath,

which creates a unique volatolomic signature [3]. Owing to

their characteristics, VOCs can be measured non-intrusively

from the breath or other body sources [3, 4]. Several stud-

ies have shown the diagnostic potential for a variety of condi-

tions based on VOC analysis [5-9]. Malignant diseases, where

early detection is crucial, are the main focus of VOC anal-

ysis, with lung cancer (LC) and gastric cancer (GC) being

the most studied. LC and GC together were responsible for

approximately 2.5 million deaths globally in 2018 [10]. The

aim of VOC analysis of the breath using sensors is to identify

a “VOC-print” comprising the total abundances and ratios of

the compounds in the breath, giving an overall unique chem-

ical pattern [11]. This technology can help to address spe-

cific challenges concerning LC screening and GC mortality

[12,13]. To facilitate real-world applications, different ethnic-

and culture-based populations should be sampled. Here, we

carried out a VOC-based clinical trial for GC and LC detec-

tion in China to classify these two major malignancies with

different genetic and cultural backgrounds, using our devel-

oped sensors [1] with newly-developed sensor-printing and

sampling methods.

A total of 545 breath samples (one/two samples per sub-

ject) were collected from 426 adult participants between Jan-

uary 2018 and July 2019 at the Jiangyin Hospital Affiliated to

the Southeast University Medical College in China. The study

population consisted of three groups: LC patients (n = 158),

GC patients (n = 115), and healthy volunteers (n = 153), as

detailed in Table 1. All participants gave their informed con-

sent for inclusion before participating in the study.

Exhaled alveolar breath was collected in a controlled

manner. End-tidal expired air was directly trapped and pre-

concentrated in Tenax® TA sorption tubes (Buchem BV,

List of Abbreviations: VOC, volatile organic compounds; LC, lung cancer; GC, gastric cancer; GC-MS, gas chromatography connected to mass

spectrometry; GNP, gold-nanoparticles; SiO2, silicon dioxide; SU-8, photosensitive polymer; TD, thermal desorption; DFA, discriminant factor analysis; TP,

true positive; TN, true negative; FP, false positive; FN, false negative; ROC, receiving operating characteristics; AUC, area under the curve.
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Apeldoorn, The Netherlands). These new tubes were spe-

cially constructed for direct sampling at the SunshineHaick

Co. (China) (see Supplementary Methods).

The nanomaterial-based sensor system (nanosensor) was

originally developed at Technion (Haifa, Israel) [5, 7] and

was recently redesigned as a benchtop device for breath VOC

analysis-based LC and GC detection in China (Figure S1).

The collected samples were exposed to the nanosensor array.

The sensors comprised layers of gold nanoparticles (GNPs)

with 13 different organic ligands in two formats (manual and

printed), resulting in 26 different sensors inserted in each

nanosensor system. The printed method is a novel approach

using an inkjet printer and a unique micro-barrier ring devel-

oped to overcome topological irregularities (Figures S2 and

S3).

Fifteen sensors were chosen (Table S1) after checking that

their responses were reproducible with no background noise

[7, 9]. One or two sample tubes per volunteer were introduced

to the sensor array chamber, which was specially assembled

with a thermal desorption (TD) system, enabling the sample

tube to be exposed directly to the sensor array.

Exposure to the breath samples or the calibration com-

pounds resulted in rapid and reversible changes of the sen-

sors’ electrical resistance. Breath components were identified

from the time-dependent resistance response of each sensor.

Each sensor responded to all (or to a certain subset) of the

VOCs found in the exhaled breath samples. Breath patterns

were obtained from the collective response of the sensors by

applying discriminant factor analysis (DFA). The DFA out-

put variables constitute mutually orthogonal dimensions. We

divided the dataset for each binary analysis (i.e., LC vs. con-

trol, GC vs. control, and GC vs. LC) into training (70% sam-

ples) and testing sets (30% samples). Leave-one-out cross-

validation was used to calculate the classification success in

terms of the numbers of true positive (TP), true negative (TN),

false positive (FP), and false negative (FN) predictions. Given
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F I G U R E 1 Data classification of the clinical trial based on leave-one-out cross validation through discriminant factor analysis of the sensor

array results. Box plots on the first canonical score of the training set (blue square) and testing set (red star) for LC versus Control (a), GC versus

Control (c), and LC versus GC (e). ROC analysis of the training set including the AUC for LC versus Control (b), GC versus Control (d), and LC

versus GC (f). The horizontal dashed line in the box plots represents the cut-off value of the model. Abbreviations: LC, lung cancer; GC, gastric

cancer; ROC, receiver operating characteristic analysis; AUC, area under the curve.
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T A B L E 2 Classification success of discriminant factor analysis models for nanosensor array analysis

Training set Testing set
Statistics LC vs. C GC vs. C LC vs. GC LC vs. C GC vs. C LC vs. GC
Accuracy (%) 99 99 81 100 99 72

Sensitivity (%) 100 100 86 100 100 76

Specificity (%) 97 98 75 100 98 66

PPV (%) 98 98 82 100 98 75

NPV (%) 100 100 81 100 100 67

TP (cases) 156 117 133 66 53 52

TN (cases) 103 107 90 47 43 33

FP (cases) 3 2 30 0 1 17

FN (cases) 0 0 21 0 0 16

PPV – positive predictive value; NPV – negative predictive value; TP – true positive; TN – true negative; FP – false positive; FN – false negative.

k measurements, the model was computed using k-1 training

vectors. Receiver operating characteristic (ROC) analysis was

used to test the performance of the training set data and to cal-

culate the cut-off values (see details in Supplementary Meth-

ods supporting information).

Evaluation of the developed nanosensor system involved

simulating the sample analysis by four similar nanosensor

systems so that the reproducibility of different devices using

known mixtures could be assessed. The clinical data were ana-

lyzed on the developed nanosensor system (Supplementary

Methods and Figure S1).

The reproducibility of a diagnostic system is important. A

reliable test requires high precision among different systems

using the same sensing technology. Here, we ran 21 repeated

breath samples collected over1 month from the same individ-

ual, as well as simulated breath mixtures from LC and GC

patients, on four different systems running in parallel. The

results showed that similar sensors from different systems

gave comparable responses with a relative standard deviation

of 0.1% for the response signals within the tested groups (Sup-

plementary Methods and Figures S4, S5).

The new tube approach, i.e., direct sampling, was evalu-

ated. Data on the capacity for breath collection were highly

reproducible throughout the exposure on the device (Fig-

ure S5). Breath samples differed in humidity. Although the

absorbent material Tenax could reduce the water content of

the samples, it could not be removed completely. Therefore,

to eliminate variation, the humidity was compensated using

a linear regression of known humidity levels (Figure S6).

The classification model based on a training set of LC versus

control showed high accuracy, sensitivity, and specificity,

with 0.99 area under the curve (AUC) in the ROC analysis

(Table 2, Figure 1a, b). Likewise, all measures were 100% in

the testing set. Similarly, GC versus control gave high levels

of all performance measures for both the training and testing

sets (Table 2, Figure 1c, d). The third classification model

of LC versus GC gave high levels of measures, yet slightly

lower, thought clinically acceptable (Table 2, Figure 1e, f).

A number of outliers were found in the control group. The

reason for such a response was unclear. We assumed that

those people were unaware of the presence of cancer or they

could be momentary electrical noises from specific sensors.

Nevertheless, as can be seen, these outliers did not affect the

performance of the model.

We further assessed the capacity of the system to dis-

tinguish early-stage (I, II) from late-stage (III, IV) cancers.

For LC, the accuracy was 59% and 81% for the training and

testing sets, respectively. For GC, the accuracy was 48%

and 83% for the training and testing sets, respectively. The

low accuracies could be attributed to the rather low numbers

in each subgroup influencing the classifier. However, it is

important to check whether stage I can be distinguished

from stages II-IV, as stage I is considered localized and

can be surgically removed in most cases. The latter classi-

fication for LC and GC gave 71% and 69% accuracy in the

validation tests, suggesting that it was feasible to identify

cases that remained localized and were suitable for surgical

resection.

A number of confounding factors that could affect the

analysis outcome were tested. The effects of gender, smoking

and alcohol consumption were tested for LC and GC. Chronic

conditions such as asthma are also important confounding

factors [5, 6], but we could not test this in the present clinical

study as only three subjects were recognized as asthmatic. The

confounding factor analysis showed that most of the factors

examined had a near-random influence on the classifier. For

LC versus control, gender, smoking, and alcohol consump-

tion gave AUCs of 0.62, 0.54, and 0.48 in the ROC analysis,

respectively (Figure S7). The age factor gave AUC of 0.80,

implying its influence on classification. Indeed, there was a

rather big difference between the average age of LC patients

(63.5 years) and healthy volunteers (47.5 years). However,

the classifier for the comparison between LC and control

gave a 99% accuracy; thus, even if age differences had some
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influence, most of the differences could be attributed to

the health condition itself, i.e., sick versus healthy. For GC

versus control, gender, smoking, and alcohol consumption

gave AUCs of 0.45, 0.49, and 0.58, respectively, in the

ROC analysis (Figure S8). Age gave an AUC of 0.88, again

implying some influence on classification, but the sick

versus healthy factor was much stronger (99% accuracy).

Therefore, it is likely that age had a minor influence on the

main classification, as for LC described above. No reliable

statistical analysis was possible to determine whether the

presence of Helicobacter pylori was a confounding factor,

as only six GC patients were identified as H. pylori positive,

though we previously showed that this factor had no influence

on GC classification in a European population [9]. For LC

versus GC, confounding factor analysis for gender, smoking,

and alcohol consumption gave AUCs of 0.54, 0.55, and 0.53,

respectively, in the ROC analysis. For the age factor, as in the

two comparisons above for LC versus control and GC versus

control, the AUC was 0.73 (Figure S9).

In conclusion, Patients with LC and GC have significantly

different patterns of VOCs in breath opposed to healthy con-

trols. Changes in breath VOCs can be easily measured using

a nanosensor-array system. Fast and inexpensive sample col-

lection can be done by direct breath sampling into dedi-

cated Tenax tubes. The importance of confounding data was

assessed and should continue to be tested in future studies.

The data presented here are another step towards a real-world

clinical diagnostic system for fast and affordable cancer detec-

tion and management.
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