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Expression profiling of primary and metastatic oral
squamous cell carcinoma identifies progression-associated
transcriptome changes and therapeutic vulnerabilities
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Oral squamous cell carcinoma (OSCC), a major subgroup
of head and neck squamous cell carcinoma (HNSCC), is
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an aggressive disease that preferentially spreads to cervical
lymph nodes. Positive lymph node status is an impor-
tant predictor of survival in OSCC [1-3]. Hence, a better
understanding of the molecular mechanisms underlying
oral cancermetastasis and the identification of therapeutic
vulnerabilities are needed to prevent and treat metastatic
disease.
We collected 87 primary tumors and 21 lymph node

metastasis (LNM) from 72 OSCC patients to conduct com-
prehensive transcriptome-wide expression and correlation
analyses (Figure 1A). First, we performed expression-based
clustering with all primary tumors and observed the best
subdivision with k = 3 using protein-coding and non-
coding genes (Figure 1B). Of note, we observed transcrip-
tional heterogeneity among multiregional tumor samples
in about 30% of the cases, leading to the assignment of
these patients and their respective tumors to different clus-
ters. Intriguingly, Kaplan-Meier analysis of patients whose
tumors were unambiguously assigned to only one cluster
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F IGURE 1 Deep transcriptome and isoform analysis reveals survival and metastasis biomarkers and targeting options for oral squamous
cell carcinoma.
(A) Overview of the Oral Squamous Cell Carcinoma (OSCC) patient and tissue cohort. The scheme was created in BioRender. Gutschner, T.
(2025) https://BioRender.com/q66a024.
(B) Consensus matrix of the primary tumor samples obtained via consensus clustering. Consensus values indicate the frequency with which
samples clustered together (0 - never to 1 - always) during distinct permutations of the algorithm.
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F IGURE 1 (Continued)
(C) Kaplan-Meier overall survival (OS) analysis of patients with tumors unambiguously assigned to one of three clusters. Patients with cluster
3 tumors tend to have worse OS.
(D) Hazard ratio (HR) values plotted against False Discovery Rate (FDR)-adjusted log-rank test-derived P-values of all protein-coding and
non-coding genes. Samples were divided by tertile separation, and the gene list was filtered for at least 10 samples per group (genes with FDR
≤ 0.05 are highlighted).
(E) Kaplan-Meier analysis of OS in the OSCC cohort (n = 70 patients) stratified by SHMT2mRNA abundance. Samples were divided by
median separation.
(F) Representative images of OSCC cell lines after transfection with two independent SHMT2-targeting small interfering RNAs (siSHMT2a/b).
Two-dimensional growth was strongly impaired after depletion of SHMT2 in all three cell lines. The white scale bar indicates 400 µm.
(G) Venn diagram of significantly deregulated genes in metastases and LNMpos- tumors. Genes upregulated in both datasets and targeted by
an approved drug, as well as gene ontology (GO) biological processes significantly overrepresented in downregulated genes found in both
datasets, are indicated. The scheme was created in BioRender. Gutschner, T. (2025) https://BioRender.com/k79r687.
(H) Plot of genes with significant isoform switches (q ≤ 0.05) in metastases, as obtained by the R package IsoformAnalyzeR. Genes with the
highest combined differences in isoform fraction values (DIFs) and lowest q-values are highlighted.
(I) Three-dimensional protein structure of the canonical WNT5A protein according to AlphaFold. The turquoise area marks the WNT5A-203
isoform, which is decreased in lymph node metastases. Letter codes indicate primer binding sites for the cloned overexpression constructs
used for functional assays. Representative Western blot (n = 3) shows the overexpression of different WNT5A protein isoforms in SAS cells.
Ribosomal Protein L7 (RPL7) was used as a loading control.
(J-K) Representative pictures depicting spheroid growth (J) and matrigel-based invasion (K) upon overexpression of the respectiveWNT5A
isoforms in SAS cells (scale bars = 800 µm). Bar graphs show the mean and standard deviation (n = 5). One-way ANOVA (Holm-Sidak
corrected) was performed for statistical testing, with *P ≤ 0.05.
Abbreviations: C1/2/3, cluster 1/2/3; DIF, differences in isoform fraction; GABRG3, Gamma-Aminobutyric Acid Type A Receptor Subunit
Gamma 3; GO, gene ontology; FDR, False Discovery Rate; HR, Hazard ratio; HTR6, 5-Hydroxytryptamine Receptor 6; LNMpos, lymph node
metastasis-positive; MAOB, Monoamine Oxidase B; MYL6, Myosin Light Chain 6; OS, overall survival; OSCC, oral squamous cell carcinoma;
RORC, RAR Related Orphan Receptor C; Rpl7, Ribosomal Protein L7; SHMT2, Serine Hydroxymethyltransferase 2; siSHMT2a/b, small
interfering RNAs a/b targeting SHMT2; STAC3, SH3 And Cysteine Rich Domain 3; TUBB4A, Tubulin Beta 4A Class Iva; WNT5A, Wnt family
member 5A; ZNF443, Zinc Finger Protein 443.

revealed that cluster 3 (C3) had the worst outcome, with
a median survival of 15.6 months compared to 28.57 and
36.53 months for clusters 1 (C1) and 2 (C2), respectively
(Figure 1C). Importantly, prognostic factors known to neg-
atively affect survival, such as high T, N, and G status,
were not enriched in C3 tumors (Supplementary Figure
S1A-C). However, gene expression analysis identified 244
genes that were significantly changed in C3 compared
to C1/2 tumors (Supplementary Figure S1D, Supplemen-
tary Table S1). Of note, cell cycle-related gene sets,
including Early region 2 binding factor (E2F) and Mye-
locytomatosis oncogene (MYC) target genes, along with
other oncogenic signaling pathways, showed a positive
normalized enrichment score (NES), potentially explain-
ing the poor outcomes of C3 tumors (Supplementary
Figure S1E).

1 SHMT2 is a biomarker and
therapeutic target in OSCC

Next, we performed a gene expression-based overall sur-
vival (OS) analysis and identified two significant genes,
namely Zinc Finger Protein 443 (ZNF443) and Serine
Hydroxymethyltransferase 2 (SHMT2) (Figure 1D, Supple-

mentary Table S2). Specifically, ZNF443 expression was
associated with a reduced risk (Hazard ratio [HR] =
0.238), whereas expression of SHMT2 (HR = 4.028) sug-
gested a higher risk of mortality. Thus, we further tested
their prognostic relevance for OS and recurrence/disease-
free survival (RFS/DFS) in our patient cohort (Figure 1E,
Supplementary Figure S2A-C) as well as in The Can-
cer Genome Atlas (TCGA) HNSCC dataset (Supplemen-
tary Figure S2D-E) [4]. These analyses indicated that
SHMT2, but not ZNF443, might serve as an OSCC-specific
biomarker for OS. In line with this, SHMT2 expression
was higher in HNSCC tissues compared to normal tissues,
as well as in T4 versus T1 tumors of the OSCC subtype,
and its expression level increased with higher tumor grade
(Supplementary Figure S3). Furthermore, univariate Cox
regression analysis demonstrated a significant association
of age, T-stage, N-stage, and SHMT2 expression (Relative
Risk [RR] = 1.548, P = 0.049; 95% confidence interval
[CI] = 1.000-2.396]) with OS in OSCC patients. Multivari-
ate analysis further confirmed the association of SHMT2
(RR = 1.616, P = 0.041; 95% CI = 1.020-2.559]) (Supple-
mentary Table S3). Intriguingly, downregulating SHMT2
in SAS, Cal33, and XF354 cells or blocking its activity using
an inhibitor [5] reduced proliferation and viability while
inducing apoptosis (Figure 1F, Supplementary Figure S4).
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These data confirmed previous studies and underscored
the therapeutic potential of SHMT2 in OSCC [6, 7].

2 Identification of
metastasis-associated genes as potential
therapeutic targets

Next, we aimed to characterize the metastasis-associated
transcriptome in our OSCC cohort. First, we compared the
transcriptome of primary tumors and matched LNM from
each patient. This analysis identified 1,710 deregulated
protein-coding and 990 long non-coding RNA (lncRNA)
genes (false discovery rate [FDR] ≤ 0.05; | log2(Fold
change) | ≥ 1). Subsequent gene set enrichment analysis
revealed 32 gene sets, including Kirsten Rat Sarcoma Viral
Oncogene Homology (KRAS) signaling and epithelial-
to-mesenchymal transition (EMT)-promoting gene sets,
among others, which showed positive enrichment in
metastasis (Supplementary Figure S5A-C, Supplemen-
tary Tables S4-S5). In order to narrow down the list of
putative metastasis-associated genes, we compared gene
expression patterns between primary tumors with (n =

43) and without (n = 24) LNM. This complementary
approach uncovered 482 deregulated protein-coding and
190 lncRNA genes (Supplementary Figure S5D-E, Sup-
plementary Tables S6-S7). Intriguingly, a total of 31 gene
sets were significantly enriched in LNM-positive (LNMpos)
tumors, but only EMT-promoting genes showed consistent
positive enrichment in both differential gene expression
analysis (Supplementary Figure S5F). To identify individ-
ual genes driving and maintaining metastases, we inter-
sected the lists of differentially expressed genes from both
analyses (Supplementary Table S8). This revealed a com-
mon set of 41 upregulated and 40 downregulated genes.
Gene ontology analysis suggested that differentiation-
associated processes were impaired in both LNM and
LNM-positive tumors (Figure 1G). Importantly, a database
search using the canSAR knowledgebase [8] identified
four consistently upregulated genes that are targetable
with approved clinical drugs. However, their cellular and
molecular functions as well as their contribution to OSCC
metastasis needs to be established using appropriate in
vitro and in vivomodels.

3 Analysis of metastasis-associated
isoform usage

Finally, we extended our gene-level expression analy-
sis and characterized gene isoform usage in primary
tumors and their matched metastasis. We identified hun-
dreds of alternative transcription events that were either
enriched or diminished in metastasis (Supplementary

Figure S6A). At the individual gene level, this analysis
yielded a list of 114 genes with significant isoform switches
(Figure 1H, Supplementary Table S9). The most signif-
icant isoform switches were observed for Wnt Family
Member 5A (WNT5A) and Myosin Light Chain 6 (MYL6),
whereas SH3 And Cysteine Rich Domain 3 (STAC3), and
RAR Related Orphan Receptor C (RORC) showed the
highest combined differences in isoform fraction (dIF)
values (Figure 1H). We decided to investigate the iso-
form switch in WNT5A in greater detail. In metastases,
the canonical isoform (WNT5-201) was more abundant,
while the fractions of WNT5A-202 (encoding the same
WNT5A protein) and WNT5-203 (encoding a shorter pro-
tein variant) were significantly reduced (Supplementary
Figure S6B). We generated overexpression constructs,
transduced SAS cells with these variants, and success-
fully detected all WNT5A proteins at their expected size
(Figure 1I). Intriguingly, overexpression of the canonical
WNT5A protein only slightly enhanced spheroid growth
in SAS cells but strongly increased their invasive capac-
ity (Supplementary Figure S6C-D). Moreover, comparison
of the different WNT5A isoforms revealed no significant
differences in growth (Figure 1J). However, cells overex-
pressing theWNT5A-203 (BC construct) isoform exhibited
markedly reduced invasive potential in Matrigel com-
pared to cells expressing other WNT5A protein variants
(Figure 1K). These findings suggest that inhibiting the
canonical WNT5A isoform may represent a therapeutic
strategy to prevent metastasis in OSCC, consistent with
previous reports [9].
In summary, our study contributes to OSCC profiling

and target identification efforts [4, 10] in a uniquemanner.
Our carefully selected sample collection included LNM-
negative and LNMpos primary tumors as well as their
matched metastases. Furthermore, RNA isolated in this
study was subjected to total RNA sequencing upon ribo-
somal RNA depletion, providing a more unbiased view of
the primary andmetastatic oral cancer transcriptome. This
approach enabled the identification of coding and non-
coding genes, as well as isoforms, associated with OSCC
metastasis. However, additional studies are needed (see
Supplementary Discussion) to confirm the described asso-
ciations and validate the clinical relevance of individual
candidates in vitro and in vivo.
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