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Efficient 5-ALA-photodynamic therapy in nasopharyngeal
carcinoma induces an immunoactivation mediated by
tumoral extracellular vesicles and associated with
immunogenic cell death

Nasopharyngeal carcinoma (NPC) is a rare cancer, with
120,334 cases worldwide in 2022, but it remains endemic
in Southeast Asia and North Africa. Early-stage NPC
is typically treated with radiotherapy, often combined
with chemotherapy for advanced stages [1]. Despite a 5-
year survival rate of 70% to 90% for locoregional disease,
late-stage diagnosis and locoregional or distant recur-
rence and metastasis (R/M) result in a poor prognosis
for many patients, underscoring the urgent need for
novel therapeutic strategies [2–4]. The tumor microen-
vironment, enriched with immunosuppressive elements
such asM2macrophages,myeloid-derived suppressor cells
(MDSCs), and regulatory T cells (Tregs), plays a central
role in promoting immune evasion and resistance to ther-
apy. In NPC, effective therapeutic strategies should not
only induce tumor cell death but also reprogram this
immunosuppressive microenvironment to restore robust
anti-tumor immunity. To address these challenges, we
propose evaluating the efficacy of photodynamic ther-
apy (PDT) and its immunoactivating properties in NPC.
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PDT is a non-invasive treatment that induces cell death
via reactive oxygen species (ROS) and activates an anti-
tumor immune response by releasing tumor antigens
and damage-associated molecular patterns (DAMPs) [5,
6]. After examining the direct cell death induced by 5-
aminolevulinic acid (5-ALA)-PDT, we investigated its abil-
ity to trigger immune activation and its effects on immune
cell populations and their secretome. Lastly, we conducted
an in-depth analysis of molecular and vesicular (extracel-
lular vesicle) components to understand the mechanisms
underlying immune response activation. Detailed study
designs and methods are available in the Supplementary
Materials.
The prodrug 5-ALA is preferentially absorbed by tumor

cells and metabolized into protoporphyrin IX (PpIX), the
photosensitizer, via the heme synthesis pathway (Supple-
mentary Figure S1A). To evaluate 5-ALA-PDT in NPC
cell lines, we assessed their capacity to convert 5-ALA
into PpIX. We observed that NPC cell lines expressed key
enzymes and transporters involved in the heme pathway,
with no significant differences, confirming their ability
to metabolize 5-ALA into PpIX (Supplementary Figure
S1B). We then incubated NPC cells with varying concen-
trations of 5-ALA, showing successful conversion of 5-ALA
into intracellular PpIX after 2 hours, followed by extra-
cellular release of PpIX between 6 to 8 hours (Figure 1A,
Supplementary Figure S1C). Based on these findings and
considering clinical data, we selected a 4-hour incubation
period for subsequent experiments.
To determine the direct impact and efficacy of 5-ALA-

PDT on NPC cell lines, we subjected the cells to 5-ALA-
PDT. A dose-dependent reduction in cell viability was
observed, with CNE2 cells (EC50: 104.9 µmol/L) exhibit-
ing greater sensitivity to treatment compared to CNE1 cells
(EC50: 209.7 µmol/L) (Figure 1B, Supplementary Figure
S1D). No cell toxicity was observed under non-PDT con-
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F IGURE 1 PDT on NPC cell line induces immunogenic cell death and the release of immunoactivating EVs. (A) Fluorometry-based
PpIX intracellular quantification of CNE1 and CNE2 cells treated with 5-ALA at different concentrations and incubation times. Results are
expressed in relative fluorescence units (RFU) and shown as mean ± SEM. Results are based on three independent experiments. (B) Viability
of CNE1 and CNE2 treated with different concentrations of 5-ALA and illuminated (635 nm, 3.6 J/cm2). Cell viability was assessed 24 hours
post-PDT. NT: non-treated, ILLU: illumination alone, PS: photosensitizer alone, PDT: illumination in the presence of photosensitizer. Results
are normalized to the NT condition and shown as mean ± SEM. Results are based on three independent experiments. Statistical analysis was
performed using One-Way ANOVA. *** P < 0.001. (C) ROS generation within CNE1 and CNE2 cells treated with 5-ALA-PDT at EC80 (635 nm,
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ditions. Moreover, as expected, a significant release of ROS
was detected in the PDT condition, with an average pos-
itivity rate of 85% (CNE1) and 89% (CNE2) (Figure 1C,
Supplementary Figure S1E).
Having demonstrated the direct effect of 5-ALA-PDT,

we investigated the type of cell death induced, focusing
on apoptosis and necrosis (Supplementary Figure S2A-B).
Predominantly necrotic cell death was observed, with a
dose-dependent increase peaking at 0.5 mmol/L for CNE1
and 1 mmol/L for CNE2 (Supplementary Figure S3A-B).
Next, we measured the secretion of various cytokines in
the supernatants of treated and untreated cells to assess
whether tumor cells release cytokines upon treatment
(Supplementary Figure S2C). In CNE1 cells, IL-6 secre-
tion decreased during the early post-PDT period, then
increased at 24 hours, while in CNE2 cells, a prolonged
decrease lasting up to 72 hours post-PDT was observed.
For TGF-β, a decrease in secretion was noted starting at
48 hours post-5-ALA-PDT in CNE1, with no significant
change in CNE2.
5-ALA-PDT has been observed to induce cell death,

predominantly necrotic, and to modulate the tumor cell
secretome, which may indicate a potential immunoacti-
vating effect of this therapeutic modality. To explore this,
we investigated the effect of conditioned media (CM) col-
lected 24 hours post-5-ALA-PDT at EC80 on immune cell

proliferation. For the CNE1 cell line, CM-PDT significantly
increased the proliferation of non-activated peripheral
blood mononuclear cell (PBMC) at 72 hours (23%) and 120
hours (28%) compared to non-treated (NT) CM (CM-NT).
Similarly, for the CNE2 cell line, proliferation increased
by 27% at 72 hours, demonstrating an immunoactivating
effect of CM-PDT across both cell lines (Figure 1D).
Given the proliferative effects of post-5-ALA-PDT CM

on PBMCs, we further examined its impact on different
immune cell populations. For the CNE1 cell line, at 72
hours post-culture, we observed an increase in the preva-
lence of CD3+ T lymphocytes (TLs) (50.46% vs. 70.63%),
supported by an increase in CD4+ TLs (42.8% vs. 63.36%)
and CD8+ TLs (14.10% vs. 18.06%), as well as in natural
killer cells (NK) (17.8% vs. 28.36%) when PBMCs were cul-
tured with CM-PDT compared to CM-NT. In parallel, we
observed a decrease in the prevalence of B Lymphocyte
(BL) (8.27% vs. 2.83%) and dendritic cell (DC) (13.01% vs.
6.13%) (Figure 1E). A slight increase in induced regula-
tory TL (iTreg) was observed at 72 hours (0.2% vs. 1.63%),
which was offset by a decrease at 120 hours (Figure 1E,
Supplementary Figure S4A-B). For the CNE2 cell line,
there also appeared to be an increase in the prevalence
of CD3+ TLs (66.5% vs 69.66%) when PBMCs were cul-
tured with CM-PDT compared to CM-NT at 72 hours
(Figure 1E).

1.8 J/cm2) assessed by flow cytometry analysis. Results are normalized to the H2O2 (Hydrogen peroxide) condition and shown as mean ±
SEM. Results are based on three independent experiments. Statistical analysis was performed using One-Way ANOVA. *** P < 0.001. (D)
Proliferation assay of non-activated PBMC treated with CM from the CNE1 and CNE2 recovered 24 hours after 5-ALA-PDT at EC80. ML10:
culture media of PBMCs, NT: CM of non-treated condition, ILLU: CM of illumination condition, PS: CM of photosensitizer condition, PDT:
CM of PDT condition. Results are expressed in relative proliferation index and shown as mean ± SEM. Results are based on three independent
experiments. Statistical analysis was performed using One-Way ANOVA. * P < 0.05 and *** P < 0.001. (E) Flow cytometry analysis of immune
cell populations in non-activated PBMCs cultivated with conditioned media from CNE1 and CNE2 cells collected 24 hours post-5-ALA-PDT
and analyzed at 72 hours. The results are represented in the form of a bubble plot with the size of the bubble and the color gradient
representing the percentage of cells in the PBMC population (%) and shown as mean. Results are based on three independent experiments.
(F) Flow cytometry analysis of activating markers on CD8+ T cells population in non-activated PBMCs cultivated with conditioned media
from CNE1 and CNE2 cells collected 24 hours post-5-ALA-PDT and analyzed at 72 hours. Results are expressed as mean of MFI (Median
Fluorescence Intensity) normalized to the NT condition ± SEM. Results are based on three independent experiments. Statistical analysis was
performed using Two-Way ANOVA. * P < 0.05, ** P < 0.01, and *** P < 0.001. (G) Dosage of cytokines secretion by Multiplex ELISA in the
supernatant of non-activated PBMCs cultivated with conditioned media of CNE1 and CNE2 cells collected 24 hours post-5-ALA-PDT and
analyzed at 72 hours and 120 hours. Results are expressed in cytokines concentration (pg/mL) and shown as mean ± SEM. Results are based
on three independent experiments. Statistical analysis was performed using Two-Way ANOVA. * P < 0.05, ** P < 0.01, and *** P < 0.001. (H-I)
Confocal microscopy analysis of HSP70 (H) and CRT (I) exposure in CNE1 and CNE2 cell lines 4 hours after ALA-PDT at EC80. The nucleus
is stained with DAPI and the membrane with phalloidin. Scale = 50 µm. (J) Measurement of eATP release after indicated time of 5-ALA-PDT
in CNE1 and CNE2 supernatant. Results are expressed in ATP concentration (nmol/L) and shown as mean ± SEM. Results are based on three
independent experiments. Statistical analysis was performed using One-Way ANOVA. * P < 0.05 and *** P < 0.001. (K) HMGB1 release
measured by ELISA at 6- and 24-hours post-PDT at EC80 in CNE1 and CNE2 supernatant. Results are expressed in concentration (ng/mL)
and shown as mean ± SEM. Results are based on three independent experiments. Statistical analysis was performed using One-Way ANOVA.
* P < 0.05, ** P < 0.01 and *** P < 0.001. (L) Proliferation assay of non-activated PBMCs cultivated with 5 µg/mL of SEVs from non-treated
(NT) or PDT-treated (PDT) condition isolated from CNE1 and CNE2 cells after 72 hours of culture. Results are expressed in relative
proliferation index and shown as mean ± SEM. Results are based on three independent experiments. Statistical analysis was performed using
One-Way ANOVA. * P < 0.05. Abbreviations: CRT, Calreticulin; HSP70, Heat Shock protein 70; HMGB1, High Mobility Group Box 1; eATP,
extracellular ATP; SEV, Small Extracellular Vesicle; H2O2, Hydrogen peroxide; PBMC, Peripheral Blood Mononuclear Cell; TL, T
Lymphocyte; BL, B Lymphocyte; DC, Dendritic Cell; NK, Natural Killer; Treg, Regulatory T cell; iTreg, induced Treg; nTreg, natural Treg.
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Following the observed impact of CM-PDT on lym-
phocyte populations, we analyzed their activation status
using specific markers at the same time points. For CNE1,
there was an increase in CD8+CCR7+ memory TLs at 72
hours (Figure 1F) and in CD4+CCR7+ memory TLs at 120
hours when PBMCs were cultured with CM-PDT com-
pared to CM-NT (Supplementary Figure S4C). For CNE2,
we observed an increase in CD8+CD30+ late-activated TLs
at 72 hours (Figure 1F) and CD8+CCR7+memory T cells at
120 hours (Supplementary Figure S4D). Additional mark-
ers, such as CD69+ and CD25+, also appeared elevated in
the CD8+ population, although these increases were not
statistically significant. Moreover, at 120 hours, we noted
an increase in CD4+CCR7+memory TLs and a decrease in
CD4+CD69+ early-activated TLs (Supplementary Figure
S4D, Supplementary Figure S5).
As another indicator of immune activation, we ana-

lyzed the PBMCcytokine secretome, focusing on a range of
cytokines (Supplementary Figure S6).When non-activated
PBMCs were treated with CM-PDT, there was a trend
toward increased secretion of anti-tumoral cytokine, IFN-γ
and TNF-α, along with an increase in the immunoregu-
latory cytokine IL-10 (Figure 1G). These results suggest
that CM-PDT exhibits immunoactivating properties, pro-
moting a Th1-type response with enhanced lymphocyte
activation markers and anti-tumor cytokine release.
To evaluate the immunogenic potential of 5-ALA-PDT-

induced cell death, we measured the release of DAMPs by
NPC-treated cells. First, we examined calreticulin (CRT)
and heat shock protein 70 (HSP70) exposure using con-
focal microscopy. Although some signals were observed
in control cells, a significant increase in CRT and HSP70
exposure was noted under PDT conditions, with more
intense andhomogeneous signal (Figure 1H-I, Supplemen-
tary Figure S7). Next, we observed increased extracellular
ATP (eATP) release 1-hour post-5-ALA-PDT, which was
more pronounced in CNE2 cells (Figure 1J), and increased
extracellular High Mobility Group Box 1 (HMGB1) secre-
tion compared to controls (Figure 1K). These findings
suggest that the release/exposure of DAMPs by NPC cells
following 5-ALA-PDTmay contribute to immune response
activation via the CM.
A key player in the tumor microenvironment is tumor-

derived exosomes, which potentiate the suppressive activ-
ity and recruitment of Treg [7] and induce alterations
in DC maturation, favoring a regulatory phenotype [8].
We isolated small extracellular vesicles (SEVs) from the
CM-NT and CM-PDT of cells treated with 5-ALA-PDT
at EC80, characterizing them based on size and protein
content, which suggested they are exosomal vesicles (Sup-
plementary Figure S8A-C). Further investigation showed
that PDT-SEV induced a significant increase in PBMC

proliferation (78.6%) compared to non-activated PBMCs
for CNE1. Similarly, for CNE2, PDT-SEV induced prolifer-
ation compared to both non-activated PBMCs (68.65%) and
NT-SEV controls (21%) (Figure 1L). Thus, PDT appears to
modify the functionality of SEVs’, potentially contributing
to immune activation and proliferation. A more detailed
examination of the vesicular content revealed an increase
in double-stranded DNA (dsDNA) in SEVs following treat-
ment. Given that dsDNA has the potential to activate
recognition receptors such as Toll-like receptor 9 (TLR-
9) or the cGAS/STING pathway, it is plausible that these
mechanisms contribute to the immunoactivating effect
observed from exosomes (Supplementary Figure S8D).
In conclusion, we demonstrated for the first time that

5-ALA-PDT induces necrotic tumor cell death in NPC
cell lines, accompanied by ROS release, and may promote
a Th1-type immune response. This response is marked
by lymphocyte proliferation and activation, along with
the release of pro-inflammatory cytokines, potentially
triggered by the release/exposure of DAMPs and the secre-
tion of immunostimulatory extracellular vesicles. These
findings suggest that 5-ALA-PDT could be a promising
adjuvant therapy for R/M NPC patients, alongside con-
ventional treatments, by inducing tumor cell death and
promoting a longer-term anti-tumor immune response.
Therefore, combining 5-ALA-PDT with immunotherapy,
especially immune checkpoint inhibitors, may offer a syn-
ergistic effect for patients with limited treatment options.
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