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Cytotoxic and regulatory T cell interactions calculated from
image mass cytometry predict immunochemotherapy
response in triple-negative breast cancer

In the tumor microenvironment (TME), various types of
immune cells interact with each other and with can-
cer cells, playing critical roles in cancer progression and
treatment [1]. Numerous studies have reported that the
infiltration levels of specific immune cells are associated
with patient prognosis and response to immunothera-
pies [2, 3]. For instance, the density of pre-existing tumor
infiltrating lymphocytes in the TME has been found to
positively correlate with patient responses to anti-PD-
1 treatment in triple-negative breast cancer (TNBC) [3].
However, the relationship between immune cell-cell inter-
actions (CCIs) in the TME and patient clinical outcomes
remains unclear due to the limited availability of large-
scale datasets for systematic CCI investigation. Recently,
imaging mass cytometry (IMC) has been utilized to char-
acterize the immune landscape within the TME of tumor
samples [4]. IMC can detect 30 to 40 protein markers on
a single tissue slide, enabling the visualization of spatial
distributions of various cell types at single-cell resolution.
Analyzing IMC data enables the quantification of interac-
tions between all TME cell types by examining their spatial
distributions.
In this study, we conducted a systematic analysis

to investigate the association between CCIs and treat-
ment responses of cancer patients using a large IMC
dataset. The dataset comprises the immune landscape
of 660 tumor samples from 279 TNBC patients enrolled
in a randomized clinical trial [4]. These patients were
treated with either neoadjuvant chemotherapy (n= 141) or
immunochemotherapy therapy (chemotherapy combined
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with anti-PD-L1 immunotherapy, (n = 138), with tumor
samples collected at three time points for IMC analy-
sis: baseline, early on-treatment, and post-treatment. We
applied a modified method introduced byWindhager et al.
[5] to quantify interactions for all pairs of cell types cap-
tured by IMC and examined their associations with patient
outcomes (Supplementary Material and Methods). Our
results indicated that compared to the infiltration levels of
immune cells, CCIs between specific immune cell types
were more strongly correlated with patient responses.
Notably, we found that the interaction between regulatory
T cells (Treg) and GZMB+ cytotoxic CD8+ T (Tc) cells in
pre-treatment samples was predictive of patient response
to immunochemotherapy but not to chemotherapy alone
in TNBC.
The processed IMC data provides the coordinates of

all single cells along with their cell type annotations. To
quantify the interaction from cell type X to Y (X→Y), we
calculated the average number of X cells among the 10
nearest neighbors of each Y cell and standardized this as a
Z-score by comparing it with a null distribution generated
through permutations. In each permutation, we shuffled
the labels of all cell types except epithelial cells (Figure
1A). We applied this method to the TNBC IMC dataset,
which included 20 non-epithelial cell types: endothelial
cells, fibroblasts, myofibroblasts, PDPN+ stromal cells,
CA9+ cells, Treg cells, CD4+PD1+ T cells, CD4+TCF1+
T cells, CD8+TCF1+ T cells, CD8+ T cells, CD8+PD1+
exhausted T cells (CD8+PD1+T_Ex), CD8+GZMB+T cells,
CD79a+ plasma cells, CD20+ B cells, CD56+ NK cells, PD-
L1+ antigen-presenting cells (APCs), PD-L1+IDO+APCs,
dendritic cells (DCs), M2 macrophages (M2Mac), and
neutrophils. In total, for each IMC image, we calculated
Z-scores for 380 between-cell interactions and 20 self-
interactions (Figure 1B). In the TME all cell types tend
to cluster with their own type, with fibroblasts, stromal
cells and endothelial cells displaying stronger clustering
tendencies compared to immune cell types. Additionally,
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several between-cell interactions are prevalent in baseline
samples, such as the interactions of CD56+NK cells and
CA9+ cells.
Next, we compared the CCI Z-scores between respon-

ders and non-responders to identify baseline CCIs associ-
ated with patient response to immunochemotherapy. At
a significance level of P < 0.01, we identified 13 signifi-
cant CCIs (Figure 1C and Supplementary Table S1). For
example, the Z-scores for both CD8+GZMB+T→Treg (P
< 0.001) and Treg→CD8+GZMB+T (P < 0.001) were sig-
nificantly higher in responders than in non-responders
at baseline (Figure 1D). This finding suggests that
patients sensitive to neoadjuvant immunochemotherapy
tend to exhibit stronger interactions (i.e., spatially closer)
between these two cell types in the pre-treatment sam-
ples. CD8+GZMB+T cells are activated Tc cells, which
serve as primary killers of tumor cells and are cor-
related with improved treatment outcomes [6–8]. Con-
versely, Tregs are suppressive immune cells that inhibit
the activation and function of effector T cells, includ-
ing Tc cells [9, 10]. Another example is the baseline
interaction between PD-L1+IDO+APCs and CD56+NK
cells, which is negatively correlated with patient response
(Supplementary Figure S1). Among the 13 significant
CCIs, CD8+PD1+T_Ex→CD8+PD1+T_Ex is the only self-
interaction, showing significantly higher Z-scores in
responders compared to non-responders (Supplementary
Figure S2).
In contrast, when the fractions of immune cells among

all TME cells were analyzed, only PD-L1+IDO+APCs (P =
0.002) were significantly associated with patient response

to immunochemotherapy, followed by CD8+GZMB+ T
cells (P = 0.031) (Figure 1E and Supplementary Table
S2). These results indicate that the spatial interactions
between specific cell types offer a more effective set of fea-
tures for predicting patient response to therapeutic treat-
ment than the infiltration levels of immune cells. More
specifically, when the Z-scores for CD8+GZMB+T→Treg
and Treg→CD8+GZMB+T were used to classify respon-
ders and non-responders, they achieved area under the
curves (AUC) of 0.717 and 0.706, respectively (Figure
1F). These values significantly outperformed the immune
fractions of the twomost predictive immune cell types, PD-
L1+IDO+APCs (AUC = 0.651) and CD8+GZMB+T cells
(AUC = 0.613) (Figure 1F). Wang et al. [4] reported that
the fraction of proliferating CD8+TCF+ T cells (high Ki67
expression) was highly correlated with patient response,
yielding an AUC of 0.622 according to our computation
(Supplementary Figure S3). When patients were strati-
fied into two groups based on the median CCI Z-score
for CD8+GZMB+T→Treg, the group with strong interac-
tions demonstrated a response rate of 66.1%, in contrast to
only 25.8% in the group with weak interactions (P < 0.001,
Supplementary Figure S4).
As the interaction between CD8+GZMB+T cells and

Tregs most effectively classified responders versus non-
responders among TNBC patients, we examined how
this interaction changes during immunochemotherapy. In
the TNBC immunochemotherapy arm, 75 patients had
samples collected at all three timepoints. Using IMC
data for these patients, we compared the Z-scores for
CD8+GZMB+T→Treg and Treg→CD8+GZMB+T interac-

F IGURE 1 The baseline interaction between Treg and Tc (CD8+GZMB+T) is associated with patient response to immunochemotherapy
in triple-negative breast cancer. (A) Schematic diagram illustrating how the interaction between two cell types (X and Y) were quantified by
using a CCI Z-score. For X→Y, the average number of X neighbors of all Y cells in an image was calculated and transformed into a Z-score
based on a null distribution estimated from permutations. In each permutation, the positions of all epithelial cells were persevered, while the
positions of other cells were shuffled. Created with BioRender.com. (B) Interactions between 20 non-epithelial cell types across all baseline
tumor samples. Dot size represents the fraction of samples with significant Z-scores for a cell pair (P < 0.001). Cell pairs with significant
interactions in over 20% of samples are highlighted with a circle. Color represents the average Z-score for a cell pair across all samples. (C)
Volcano plot illustrating CCIs with significantly different Z-scores between responders and non-responders in the immunochemotherapy
arm. (D) Comparison of Treg and Tc (CD8+GZMB+T) cell interactions between responders and non-responders at baseline, prior to
immunochemotherapy treatment. (E) Volcano plot showing that immune cell fractions are less informative in distinguishing responders from
non-responders. (F) ROC curves comparing the classification accuracy of responder status between CCI Z-scores (CD8+GZMB+T→Treg and
Treg→CD8+GZMB+T) and the fractions of CD8+PD1+T_Ex and PD-L1+APCs cells. The values in the parentheses are AUC scores. (G)
Temporal trends in Treg→CD8+GZMB+T Z-scores from baseline to on-treatment and post-treatment in responders, with lines connecting
samples from the same patient collected at the three time points. (H) Changes in the fractions of Treg and CD8+GZMB+T in responders and
non-responders during immunochemotherapy. (I) Volcano plot illustrating CCIs with significantly different Z-scores between responders and
non-responders in the chemotherapy arm. (J) Baseline comparison of CD79a+ Plasma and CA9+ cell interactions in responders and
non-responders, prior to chemotherapy. (K) Schematic diagram summarizing the link between baseline Treg-Tc interaction and patient
response to immunochemotherapy. Created with BioRender.com.
Note: Panels (C-H) pertain to the immunochemotherapy arm, and Panels (I-J) pertain to the chemotherapy arm.
Abbreviations: NR, non-responder (RD, Residual Disease); On, On-treatment; Post, Post-treatment; R, Responder (pCR, pathological
Complete Response).
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tions across baseline, on-treatment, and post-treatment
samples. Interestingly, the Z-scores showed a signifi-
cant decrease from baseline to on-treatment (P = 0.002,
paired Wilcoxon test) and further to post-treatment (P <
0.001, paired Wilcoxon test) in responders (Figure 1G).
In contrast, no significant changes were observed in non-
responders (Figure 1G). During immunochemotherapy,
both responders and non-responders showed a signifi-
cant increase in Tregs infiltration levels during treatment,
followed by a post-treatment decrease, as measured by
their fractions among all TME cells (Figure 1H). However,
CD8+GZMB+T cells exhibited a significant increase dur-
ing treatment and a decrease in post-treatment only in
responders, with no significant changes in non-responders
(Figure 1H). To examine the influence of neighboring
Tregs, we compared baseline marker protein levels, mea-
sured by IMC, in CD8+GZMB+T cells with at least one
Treg among their top 10 nearest neighbors (Treg-proximal)
to those without Treg neighbors (Treg-distal). We observed
significantly higher PD-L1 and PD-1, but lower expression
of GZMB, in Treg-proximal CD8+GZMB+T cells compared
to Treg-distal cells at baseline (Supplementary Figure S5).
These findings suggest that Tc cell function is suppressed
when they are in close proximity to Tregs.
Using the same method, we next investigated the

chemotherapy arm and identified baseline CCIs associ-
atedwith the response of patients treatedwith neoadjuvant
chemotherapy alone. In total, we identified 6 response-
associated CCIs at a significance level of P < 0.01 (Figure
1I and Supplementary Table S3). For example, patients
with weaker interactions between CD79a+ plasma cells
and CA9+ cells were more likely to respond to chemother-
apy (Figure 1J). None of these six response-associated CCIs
identified in the chemotherapy arm were significant in
the immunochemotherapy arm. However, when compar-
ing the t-statistics (responder vs. non-responder) for all 400
CCIs between the two arms, we observed aweak but signif-
icant correlation (R=0.27,P<0.001), suggesting that some
CCIs may have similar effects on patient response to both
treatments (Supplementary Figure S6). Taken together, our
analyses of the TNBC data indicate that the baseline inter-
action between Treg and Tc cells (CD8+GZMB+T) plays a
critical role in patient response to immunochemotherapy
but not to chemotherapy alone (Figure 1K).
In this study, we modified a commonly used method

to quantify the strength of spatial CCIs for all possible
combinations of TME cell types captured in each IMC
image. The resultant CCI Z-scores were used as features
to correlate with the immunochemotherapy responses
of TNBC patients. Compared to conventional features
based on immune cell fractions, these spatial interaction
features showed a stronger correlation with patient treat-
ment responses. Specifically, TNBC patients with stronger

interactions between Tregs and Tc cells in their pretreat-
ment samples were more likely to respond to neoadju-
vant immunochemotherapy (anti-PD-L1 combined with
chemotherapy) but not to neoadjuvant chemotherapy
alone. Consistently, these interactions were significantly
reduced during treatment, from baseline to early on-
treatment, and further reduced post-treatment in respon-
ders, but not in non-responders. In the presence of neigh-
boring Tregs, Tc cells exhibited significantly higher levels
of PD-L1 and PD-1, but lower levels of GZMB, suggest-
ing a molecular impact of their spatial interactions. These
results highlight the critical roles of CCIs in cancer pro-
gression and treatment. Interestingly, a high ratio of Treg
to CD8+ T cells (Treg/CD8+ T) has been reported to be
associated with poor patient outcomes in gastric cancer
when treated with immune checkpoint blockade therapy
[10]. Although here we identified the Treg-Tc interaction
from IMC data, it can also be measured by conventional
imaging techniques such as immunohistochemistry, mak-
ing it readily translatable into clinical applications. It
should be noted that a limitation of this study is the
lack of independent IMC datasets for further validation.
Additionally, due to the limited availability of molecu-
lar features, it is challenging to determine the molecular
mechanisms underlying the link between Treg-Tc inter-
actions and immune responses. Further validation and
mechanistic investigation in TNBC and other cancer types
will be critical when more data become available. With
the increasing application of IMC and other single-cell
imaging and transcriptomic technologies, we anticipate
incorporating CCI metrics into prognostic and predictive
models for more accurate clinical outcome predictions in
cancers.

AUTH OR CONTRIBUT IONS
Chao Cheng designed the concept and the method. Chao
Cheng, Xiang Wang, Jing Dong, and Jian-Rong Li wrote
the main manuscript text and prepared the figures. Yupei
Lin and Bikram Sahoo contributed to the preparation of
figures and the manuscript. Yanhong Liu, Yong Li, Robert
Taylor Ripley, Jia Wu, Jianjun Zhang, and Christopher
I Amos revised the manuscript and figures. All authors
reviewed the manuscript.

ACKNOWLEDGMENTS
Not applicable.

CONFL ICT OF INTEREST STATEMENT
The authors declare no competing financial interests.

FUNDING INFORMATION
This study is supported by the Cancer Prevention Research
Institute of Texas (CPRIT) (RR180061) and the National

 25233548, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cac2.12652, W

iley O
nline L

ibrary on [06/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



LETTER TO THE JOURNAL 5

Cancer Institute of the National Institute of Health
(1R01CA269764).

DATA AVAILAB IL ITY STATEMENT
The function for calculating the Z-scores of CCIs based
on IMC data and example code for its implementation
is included in GitHub https://github.com/wangsky137/
Cancer_IMC_CCI. The original TNBC dataset utilized in
this study are available for download as referenced inWang
et al. [4].

ETH ICS APPROVAL AND CONSENT TO
PART IC IPATE
Not applicable.

Xiang Wang1,2
Jing Dong1

Jian-Rong Li1,3,4
Yupei Lin1,2,3

Bikram Sahoo1
Yong Li3,4

Yanhong Liu3
Robert Taylor Ripley5,6

Jia Wu7
Jianjun Zhang8,9

Christopher I Amos1,3,4
Chao Cheng1,3,4

1Institute for Clinical and Translational Research, Baylor
College of Medicine, Houston, USA

2Graduate Program in Quantitative and Computational
Biosciences, Baylor College of Medicine, Houston, USA
3Department of Medicine, Baylor College of Medicine,

Section of Epidemiology and Population Sciences, Houston,
USA

4Dan L Duncan Comprehensive Cancer Center, Baylor
College of Medicine, Houston, USA

5David J. Sugarbaker Division of Thoracic Surgery, Michael
E. DeBakey Department of Surgery, Baylor College of

Medicine, Houston, USA
6Mesothelioma Treatment Center, Baylor St. Luke’s

Medical Center, Houston, USA
7Department of Imaging Physics, The University of Texas

MD Anderson Cancer Center, Houston, USA
8Department of Thoracic/Head and Neck Medical

Oncology, The University of Texas MD Anderson Cancer
Center, Houston, USA

9Department of Genomic Medicine, The University of Texas
MD Anderson Cancer Center, Houston, USA

Correspondence
Chao Cheng; Institute for Clinical and Translational
Research, Baylor College of Medicine, Houston, TX

77030, USA.
Email: chao.cheng@bcm.edu

ORCID
ChaoCheng https://orcid.org/0000-0002-5002-3417

REFERENCES
1. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF,

Merad M, et al. Understanding the tumor immune microen-
vironment (TIME) for effective therapy. Nature Medicine.
2018;24(5):541-550.

2. Helmink BA, Reddy SM, Gao J, Zhang S, Basar R, Thakur
R, et al. B cells and tertiary lymphoid structures pro-
mote immunotherapy response. Nature. 2020;577(7791):549-
555.

3. Loi S, Michiels S, Salgado R, Sirtaine N, Jose V, Fumagalli D,
et al. Tumor infiltrating lymphocytes are prognostic in triple
negative breast cancer and predictive for trastuzumab benefit
in early breast cancer: results from the FinHER trial. Annals of
Oncology. 2014;25(8):1544-1550.

4. Qian Wang X, Danenberg E, Huang C-S, Egle D, Callari
M, Bermejo B, et al. Spatial predictors of immunotherapy
response in triple-negative breast cancer. Pinuccia Valagussa.
2023;621:868.

5. Windhager J, Zanotelli VRT, Schulz D, Meyer L, Daniel
M, Bodenmiller B, et al. An end-to-end workflow for mul-
tiplexed image processing and analysis. Nature Protocols.
2023;18(11):3565-3613.

6. Salti SM, Hammelev EM, Grewal JL, Reddy ST, Zemple SJ,
Grossman WJ, et al. Granzyme B regulates antiviral CD8+ T
cell responses. Journal of immunology (Baltimore, Md : 1950).
2011;187(12):6301-6309.

7. Li J, Zhang H, Wu J, Li L, Xu B, Song Q. Granzymes expres-
sion patterns predict immunotherapy response and identify
the heterogeneity of CD8+ T cell subsets. Cancer Biomarkers.
2023;38(1):77-102.

8. Hwang HK, Kim HI, Kim SH, Choi J, Kang CM, Kim KS,
et al. Prognostic impact of the tumor-infiltrating regulatory
T-cell (Foxp3(+))/activated cytotoxic T lymphocyte (granzyme
B(+)) ratio on resected left-sided pancreatic cancer. Oncol Lett.
2016;12(6):4477-4484.

9. Kumagai S, Togashi Y, Kamada T, Sugiyama E, Nishinakamura
H, Takeuchi Y, et al. The PD-1 expression balance between
effector and regulatory T cells predicts the clinical efficacy of
PD-1 blockade therapies. Nature Immunology. 2020;21(11):1346-
1358.

10. Kamada T, Togashi Y, Tay C, Ha D, Sasaki A, Nakamura
Y, et al. PD-1+ regulatory T cells amplified by PD-1 block-
ade promote hyperprogression of cancer. Proceedings of the
National Academy of Sciences of the United States of America.
2019;116(20):9999-10008.

SUPPORT ING INFORMATION
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

 25233548, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cac2.12652, W

iley O
nline L

ibrary on [06/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/wangsky137/Cancer_IMC_CCI
https://github.com/wangsky137/Cancer_IMC_CCI
https://orcid.org/0000-0002-5002-3417
mailto:chao.cheng@bcm.edu
https://orcid.org/0000-0002-5002-3417
https://orcid.org/0000-0002-5002-3417

	Cytotoxic and regulatory T cell interactions calculated from image mass cytometry predict immunochemotherapy response in triple-negative breast cancer
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	FUNDING INFORMATION
	DATA AVAILABILITY STATEMENT

	ETHICS APPROVAL AND CONSENT TO PARTICIPATE
	ORCID
	REFERENCES
	SUPPORTING INFORMATION


