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Multiscale 3D spatial analysis of the tumor
microenvironment using whole-tissue digital
histopathology

Spatial statistics are crucial for analyzing clustering pat-
terns in various spaces, such as the distribution of trees in a
forest or stars in the sky. Advances in spatial biology, such
as single-cell spatial transcriptomics, enable researchers
to map gene expression patterns within tissues, offering
unprecedented insights into cellular functions and disease
pathology. Commonmethods for deriving spatial relation-
ships include density-based methods (quadrat analysis,
kernel density estimators) and distance-based methods
(nearest-neighbor distance [NND], Ripley’s K function).
While density-based methods are effective for visualiza-
tion, they struggle with quantification due to sensitivity
to parameters and complex significance tests. In con-
trast, distance-based methods offer robust frameworks for
hypothesis testing, quantifying spatial clustering or dis-
persion, and facilitating comparisons with models such as
uniform random distributions or Poisson processes [1, 2].
Ripley’s K function provides a detailed measure of spa-

tial clustering or dispersion across multiple scales by
considering all pairs of points within specified distances.
This is in contrast to NND, which may overlook structures
that vary across scales. Ripley’s K function can detect com-
plex spatial patterns over a range of distances, making it
suitable for datasets with non-uniform arrangements that
exhibit different behaviors at different scales. However,
its broader adoption has been hindered by computational
complexity and challenges in interpretation, especially
for three-dimensional data, which are common in spatial
biomedical research [3–6].

Abbreviations: NND, nearest-neighbor distance; MDSpacer,
multi-dimensional spatial pattern analysis with comparable and
extendable Ripley’s K; DTC, disseminated tumor cells; NG2+,
neural/glial antigen 2-positive; SDF-1, stromal cell–derived factor 1;
CXCR4, C-X-C chemokine receptor 4; AUROC, area under receiver
operating characteristic; CRISPR, clustered regularly interspaced short
palindromic repeats.
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To address these limitations, we introduce MDSpacer
(Multi-Dimensional Spatial Pattern Analysis with Com-
parable and Extendable Ripley’s K), a modeling tool that
implements Ripley’s K function for both 2D and 3D data,
facilitating detailed analyses within and between groups
(Figure 1A, B, Supplementary Figure S1). MDSpacer uses a
novel normalization scheme (described in Supplementary
Materials and Methods) that dramatically reduces com-
putational overhead while delivering results in an easily
interpretable and comparable format (Figure 1C–F). We
validated this tool in two cancer research studies: one
on metastatic bone cancer and another on ovarian can-
cer. In the metastatic bone cancer study, we used the
Vessel3D analysis toolkit to extract spatial point infor-
mation from 3D confocal images of murine femurs with
early-stage spontaneous metastasis (Figure 1G–K, Supple-
mentary Figures S2, S3, Supplementary Videos S1, S2).
MDSpacer identified both expected clustering at short dis-
tances and unexpected dispersion patterns at larger scales
between early-stage disseminated tumor cells (DTCs)
and neural/glial antigen 2-positive (NG2+) mesenchy-
mal cells in relation to other microenvironmental factors
[7–9]. Interestingly, no spatial relationships were observed
between DTCs and vessel bifurcations, which have been
reported in other studies [8]. In the ovarian cancer study,
we applied MDSpacer along with a deep learning model
developed to pinpoint platelet locations in whole-slide
confocal images and identified stromal cell–derived fac-
tor 1 (SDF-1)/C-X-C chemokine receptor 4 (CXCR4)-driven
platelet clustering at the primary ovarian tumor site (Sup-
plementary Figure S4). Our findings confirmed expected
interactions and revealed new significant relationships
with additional microenvironmental factors, deepening
our understanding of tumor-microenvironment interac-
tions and demonstrate the effectiveness of the MDSpacer
spatial statistics tool.
In the metastatic bone cancer study, we developed a

murine model of spontaneous metastasis (Supplementary
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Figure S5A) and verified the presence of DTCs within the
bone through fluorescent confocal imaging (Supplemen-
tary Figure S5B, C). Figure 1A and Supplementary Figure
S6 show how point sets were isolated from the 3D confo-

cal channels. The locations of every DTC seed cell in the
femur were manually recorded, totaling 824 cancer cells
across all samples. The locations of NG2+ perivascular
mesenchymal stem cells (MSCs) were determined through
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segmentation of the fluorescent marker layer (Supple-
mentary Figure S7). This method converts complex visual
structures into simplified point sets, allowing for analysis
of inherent spatial relationships using Ripley’s K function
(Figure 1B, Supplementary Video S3).
In univariate analyses, which examine clustering within

a single point event type independently of others, tumor
cells and NG2+ cells consistently exhibited significant
clustering across samples, particularly at specific scales
(Supplementary Figure S8A, B). The branch points dis-
played extremely significant clustering across all scales
(Supplementary Figure S8C). However, tortuous vessels
did not substantially deviate from a random distribution
until distances of about 80 µm (Supplementary Figure
S8D). The consistent trajectories of K values across differ-
ent radii underscore the uniformity of spatial distributions
between samples, demonstrating that MDSpacer offers
quantitative insights into biologically relevant features
while maintaining internal consistency (Supplementary
Figure S9).
In bivariate analysis, which examine relationships

between two distinct point event types, Monte Carlo sim-
ulation provides percentile intervals by randomizing point
labels and repeating the process 100 times for each image
(Supplementary Figure S10). Bivariate K function plots
between DTCs and NG2+ cells (Supplementary Figure
S11A) show that most samples exhibit significant NG2+
cell clustering near DTCs at distances under 20 µm. How-
ever, no clustering is observed at larger distances; instead,
significant dispersion between NG2+ cells and DTCs is

noted at larger radii. No clustering is observed at any scale
between tumor cells and vessel branch points or between
tumor cells and the most tortuous vessel segments (Sup-
plementary Figure S11B, C). The K function plots examine
relationships between NG2+ cells and vascular features,
such as vessel branch points and the most tortuous ves-
sel segments (Supplementary Figure S12). Results show no
spatial relationship between NG2+ cells and vessel branch
points across all scales. In contrast, NG2+ cells consis-
tently cluster near themost tortuous blood vessel segments
at distances shorter than 20 µm across all samples, sug-
gesting potential biological interactions. Additional details
regarding data processing and MDSpacer procedures can
be found in the Supplementary Materials and Methods.
In the ovarian cancer study, we hypothesized that SDF-

1 secreted by ovarian cancer cells interacts with CXCR4
receptors on platelets, functioning as a chemotactic factor
[10]. We developed a deep learning model for localizing
platelets, achieving high accuracy (area under receiver
operating characteristic [AUROC]: 0.99) in validation tests
(Supplementary Figures S13, S14, Supplementary Table S1).
Using Plerixafor, a CXCR4 inhibitor, we observed a sig-
nificant reduction in tumor weight in Plerixafor-treated
mice compared to controls (P = 0.008, Supplemen-
tary Figure S15A). Blocking SDF-1 using clustered reg-
ularly interspaced short palindromic repeats (CRISPR)
targeting the SDF-1 genes led to a significant reduc-
tion in tumor weight compared to control (P < 0.001,
Supplementary Figure S15B). Blocking CXCR4 reduced
the number of platelets extravasated into the tumor

F IGURE 1 Schematic depicting an overview of techniques used to extract relevant point information from fluorescent confocal images
of murine femur models of spontaneous metastasis and conduct normalized and comparable Ripley’s K analysis using MDSpacer. (A) An
overview of the techniques employed for initial processing of captured fluorescence layers to extract point information. Tumor cells and point
locations were determined by cancer biologists, while NG2+ cells and vessels were segmented automatically based on fluorescent signals and
image processing techniques. (B) Schematic illustrating the interpretation of the Ripley’s K function. It demonstrates the search algorithm
used for the K function and the generation of a K(r) vs. r plot to quantify and evaluate the spatial relationships of points within the study
volume. The schematic highlights the varying search radii (r) applied around each point, showing how each radius incrementally increases to
encompass more neighboring points. This approach is used to compute the K function, which is graphically represented as the K(r) vs. r plot.
The plot provides a visual interpretation of point density and clustering at different scales, aiding in the identification of patterns and spatial
structures within the data. (C-F) The MDSpacer normalization scheme. (C) Line plots represent the Ripley’s K function results from 100
random simulations generated within a mouse femur sample. (D) A graph depicts the 95% percentile interval calculated from the Ripley’s K
results of the 100 random simulations. (E) The observed spatial point Ripley’s K function is represented by the blue line, while the dotted line
represents the theoretical value modeled by 𝐾𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 =

4

3
𝜋𝑟3. (F) The MDSpacer K function normalizes results by scaling the percentile

interval to a fixed range of -1 to 1 and adjusting the K function accordingly for each radius. This normalization enables the direct comparison
of spatial relationships across different samples, which is not feasible with the traditional Ripley’s K function. (G) Visualization of the
Vessel3D functions in MDSpacer. A confocal image depicts vasculature (blue) in a whole bone sample, overlayed with skeletonized 3D
segmentation (cyan) and matched vessel branch points using a set of 4,670 engineered kernels (3 examples shown). (H-K)Methodology for
calculating tortuosity and creating a tortuosity heatmap of the 3D capillary beds of the murine femur. (H) Skeletonized 3D vessel staining
segmentation is individualized by subtracting branch points from the skeleton, leaving free-floating segments. (I) Tortuosity is then
calculated for each individualized segment. (J) Tortuosity values are mapped onto the image, resulting in a sample-wide tortuosity heatmap.
(K) The most tortuous vessels are identified by choosing segments with tortuosity values greater than three standard deviations above the
mean tortuosity distribution. This provides another point set, termed tortuous vessel centroids (TVC), which can be used for spatial analysis.
Abbreviations: GFP, green fluorescent protein; NG2, neural/glial antigen 2; MSC, mesenchymal stem cell; VE, vascular endothelial.
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parenchyma. Supplementary Figure S15C shows a sig-
nificant reduction (P = 0.047) in platelet density in
Plerixafor-treated tumor tissues compared to controls.
We validated the effect using univariate MDSpacer.

Platelets exhibited significant clustering within ovarian
cancer tissues in both control and Plerixafor-treated mice
(Supplementary Figure S16A). However, Plerixafor-treated
samples showed significantly reduced platelet cluster-
ing compared to control regions across radii from 7 to
249 µm (P < 0.05), with a more pronounced difference
observed across radii from 12 to 57 µm (P < 0.01). Sup-
plementary Figure S16B, C depict the K functions for
control and Plerixafor-treated mice, respectively. We over-
laid vessel segmentation using anti-CD31 for endothelial
cells onto platelet segmentation, enabling measurement
of each platelet’s proximity to its nearest vessel. We
observed that within 1 µm of the vessel, the number
of platelets was significantly higher in control tumor
tissues compared to Plerixafor-treated tissues (Supplemen-
tary Figure S17). Additional details regarding the ovarian
cancer experiments and data analysis can be found in the
Supplementary Materials and Methods.
In conclusion, we present a versatile point-pattern anal-

ysis platform designed for characterizing point locations
and spatial relationships within large tissue samples. By
extending Ripley’s K function to the biomedical domain
and optimizing it formulti-dimensional data, our platform
enables researchers to detect spatial relationships across
a range of distances. The novel MDSpacer normalization
approach significantly reduces computational cost while
facilitating meaningful comparisons between samples. By
making Ripley’s K function both user-friendly and accessi-
ble through a comprehensive software toolkit, MDSpacer
offers significant potential for application across a wide
array of research domains.
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