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Single-cell multi-omics reveals tumor microenvironment
factors underlying poor immunotherapy responses in
ALK-positive lung cancer

Lung cancer remains the leading cause of cancer death
in 2024, with ∼80% being non-small cell lung cancer
(NSCLC). Anaplastic lymphoma kinase (ALK) rearrange-
ments occur in ∼5% of NSCLC cases, typically treated
with ALK inhibitors, though resistance often develops
[1]. Immunotherapy has been explored for advanced or
resistant ALK-positive NSCLC, but immune checkpoint
blockade (ICB) treatments have shown limited clinical
benefits [1].
A comprehensive study of ALK-positive NSCLC tumor

microenvironment (TME) is needed to understand
immunotherapy limitations and improve treatment
strategies. We generated and collected single-cell RNA
sequencing (scRNA-seq) and single-cell Assay for Trans-
posase Accessible Chromatin with high-throughput
sequencing (scATAC-seq) datasets from lung adeno-
carcinoma (LUAD) patients with ALK rearrangements
and wild type without major oncogenic drivers (WT)
(Supplementary Table S1). By comparing TME, we aimed
to identify features explaining poor immunotherapy
responses (Figure 1A).
After batch corrections for each of the RNA and ATAC

profiles, we identified epithelial, stromal, and immune
cells (Supplementary Figure S1A, Supplementary Table
S2). From the immune compartment, we identified major
cell types such as myeloid cells, T cells, natural killer
(NK) cells, and B cells (Figure 1B, Supplementary Figure
S1B, Supplementary Table S3). Integration of the RNA and
ATAC profiles confirmed consistency between these two
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omics profiles (Supplementary Figure S1C-D). Composi-
tional analysis revealed that ALK-positive samples showed
an enrichment of innate immune cells (myeloid and NK
cells) and depletion of adaptive immune cells (T and B
cells) (Figure 1C, Supplementary Figure S1E-F), suggest-
ing weak adaptive anti-tumoral responses in ALK-positive
TME.
Oncogenic mutations primarily impact epithelial cells,

so we classified epithelial cell malignancy with the cell-
classifier and copy number variations (Supplementary
Figure S1G-H) and measured ALK and PD-L1 expression.
Malignant cells expressing ALK or PD-L1 were predomi-
nantly from ALK-positive malignant cells (Supplementary
Figure S1I). We observed that ALK-positive tumors had
a higher malignant-to-normal epithelial cell ratio than
WT tumors (Figure 1D). Additionally, malignant cells in
ALK-positive tumors exhibited increased stemness, indi-
cating greater developmental potential (Figure 1E). Top
100 upregulated genes in ALK-positive tumors were linked
to aggressive cancer pathways like epithelial-mesenchymal
transition (EMT) and hypoxia [2] (Figure 1F).
To identify malignant subsets with higher progres-

sion potential, we constructed developmental trajectories
(Supplementary Figure S1J). State 4, enriched with ALK-
positive malignant cells, showed higher stemness and
elevated stress, hypoxia, andEMTgene signatures (Supple-
mentary Figure S1J-L, Supplementary Table S4). Survival
analysis with LUAD patients in The Cancer Genome Atlas
(TCGA) [3] showed worse outcomes for patients with
higher expression of State 4 signature genes, while dif-
ferentially expressed genes (DEGs) between ALK-positive
and WT malignant cells did not predict survival (Supple-
mentary Figure S1M). This suggested that ALK rearrange-
ment leads to more aggressive and metastatic tumors and
emergence of clinically unfavorable malignant sub-states.
Cell-cell interaction analysis showed ALK-positive

malignant cells had increased interactions with myeloid
cells (Figure 1G). Among these myeloid cell subtypes,
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F IGURE 1 Comparative analysis of TME of ALK-positive andWT lung cancer. (A) Study scheme for single cell multi-omics data
and downstream analysis. (B)UMAP plots of immune cells with batch-corrected scRNA-seq profiles, color-coded for cell types. We performed
pre-processing, dimension reductions with batch correction, and clustering to obtain immune clusters. We annotated each cluster with

 25233548, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cac2.12658, W

iley O
nline L

ibrary on [06/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



LETTER TO THE JOURNAL 3

ALK-positive tumors had significantly higher proportions
of tumor-associated macrophages (TAMs) (Supplemen-
tary Figure S2A). ALK-positive TAMs were linked to
M2-like pro-tumoral functions like adipogenesis and
lipid metabolism, while WT TAMs were associated with
M1-like immune-related functions, including TNF-alpha

signaling and interferon gamma response (Figure 1H).
Sub-clustering of TAMs (Supplementary Figure S2B-C)
and RNA velocity analysis revealedWTTAMs transitioned
into anti-tumoral, inflammation-related states, whereas
ALK-positive TAMs transitioned into pro-tumoral,
metabolic states (Figure 1I-J, Supplementary Figure S2D),

corresponding cell types with cell type markers. (C)Mosaic plots for comparison of immune cell compositions between WT and ALK-positive
groups for each omics approach. The color indicates Pearson residuals, showing enrichment or depletion of the cell types for each group. The
yellow dashed lines represent the expected cell proportions, calculated by dividing the total cell counts for each mutation group by the overall
total cell counts. Significance was calculated using the Chi-square test. (D) Ratio of malignant to normal epithelial cells for each mutation
group. The malignant and normal epithelial cells were identified through the cell-classifier and detection of copy number variations. (E)
Difference of tumor stemness scores between epithelial cell types for each mutation group. Transcriptome-based differentiation potential –
indicating stemness for tumor cells – for each cell was calculated based on varieties of expressed genes and correlation patterns of commonly
expressed genes for stem-like cells. Significance was calculated using two-sided Wilcoxon rank-sum test. n.s., not significant, ****P < 0.0001.
(F) Pathway enrichment of top 100 upregulated genes in ALK-positive malignant cells compared to WT malignant cells for MsigDB Hallmark
(2020) gene sets. The color indicates fractions of the query genes that overlap with each reference gene set. Significance was calculated using
Fisher’s exact test with the Benjamini-Hochberg correction. (G) Differences in the number of cell-cell interactions from each immune cell
type to malignant cells between ALK-positive and WT samples. The cell-cell interactions between two cell types were calculated based on the
expressions of known interacting ligands and receptors. (H) Pathway enrichment of top 50 upregulated genes in TAMs of ALK-positive
tumors (left) and those of WT samples (right) for MsigDB Hallmark (2020) gene sets. The color indicates fractions of query genes that overlap
with genes of each reference gene set. The P-values were calculated using the Fisher’s exact test with the Benjamini-Hochberg correction. (I)
Stream plots depicting cell transitions according to their RNA velocity for TAMs in ALK-positive tumors (left) and WT tumors (right). The
RNA velocities were calculated by quantifying spliced and unspliced reads for each gene using Velocyto and modeling gene splicing kinetics
with scVelo. (J) Heatmap depicting cell type transitions from row to column. The color indicates log2 fold changes calculated by dividing
transition probability for TAMs in ALK-positive tumors by TAMs in WT tumors. (K) Proportions of memory B cells and plasma cells in tumor
for each mutation group. Significance of the difference was calculated using the two-sided Wilcoxon rank-sum test. (L) Ratios of expanded to
non-expanded memory B cells for each mutation group. Higher ratios indicate higher B cell activation and immune responses. B cells with
BCR sequences that had two or more overlapping clones were defined as expanded cells. Significance of the difference was calculated using
the two-sided Wilcoxon rank-sum test. (M) Scatter plot of relationship between proportion of memory B cells and proportion of CD4+ T cells
in each of mutation group. (N) Bar plots depicting total interactions among major components of tertiary lymphoid structure (TLS) composed
of B cells, CD8+ T cells, and CD4+ T cells in ALK-positive and WT tumors. Cell-cell interaction counts among those cell types were added for
each mutation group. (O) Volcano plot of DEGs of exhausted CD8+ T cells between ALK-positive and WT tumors. The P-values were
calculated using the two-sided Wilcoxon rank-sum test with Bonferroni correction. The significant genes are colored red. (P) Comparison of
gene signature scores for gene sets related to functions and states of CD8+ T cells for exhausted CD8+ T cells between two mutation groups.
Significance of the differences were calculated using the two-sided Wilcoxon rank-sum test. (Q) Visualization of two DEG analyses between
expanded and non-expanded effector and exhausted CD8+ T cells for each mutation group. T cells with TCR sequences that had five or more
overlapping clones were defined as expanded cells. The genes are considered significant for each mutation group if the adjusted P-values <
0.05 (by two-sided Wilcoxon rank-sum tests with Bonferroni correction). (R) Gene signature scores for exhausted CD8+ T cells with
neighboring nodes to IFNG (top) and KLRK1 (bot) within WT and ALK group, respectively. Cell-type specific networks were constructed for
each cell types for each mutation group and neighboring nodes were defined as all connected nodes to the hub genes. The neighboring nodes
to IFNG were defined in WT network whereas the neighboring nodes to KLRK1 were defined in ALK network to generate gene signatures. (S)
Volcano plot for differentially enriched chromVAR motifs for exhausted CD8+ T cells. The peaks from scATAC-seq profiles were added with
motif information and motif deviations compared to random peak sequences were calculated to generate motif deviation matrices. With those
matrices, differentially enriched motifs were calculated. The P-values were calculated using the two-sided Wilcoxon rank-sum tests with
Bonferroni correction. (T) Enrichment of genes with BATF motifs from DEGs of exhausted CD8+ T cells between ALK-positive and WT
groups. For each gene in the lists of DEGs, the number of BATF motifs was calculated and compared to genes not in the lists of DEGs. For
each BATF motif count threshold, P-values and odd ratios were calculated using Fisher’s exact tests for each mutation group. (U) Number of
peaks related to exhaustion-related genes. Peaks were colored red for containing BATF motifs. (V) Characterization of peaks from exhausted
CD8+ T cells that are related to exhaustion genes. Percentages of peaks linked to the exhaustion genes that contained BATF motifs (Left).
Average number of peaks co-accessible to peaks related to the exhaustion genes for each mutation group (Right). Peak co-accessibilities for
each mutation group were calculated based on co-occurrences of those peaks for cells in each group. Abbreviations: LUAD, lung
adenocarcinoma; ALK, Anaplastic lymphoma kinase; WT, wild type; scRNA-seq, single-cell RNA sequencing; scATAC-seq, Single-cell Assay
for Transposase Accessible Chromatin with high-throughput sequencing; UMAP, uniform manifold approximation and projection; TAM,
tumor-associated macrophage; Inflam, inflamed; Angio, angiogenesis; Prolif, proliferating; RTM, resident tissue-like macrophage; IFN,
interferon; LA, lipid-associated; BCR, B cell receptor; TLS, tertiary lymphoid structure; DEG, differentially expressed gene; Exh., exhausted.
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maintaining immunosuppressive TME in ALK-positive
tumors.
Depleted adaptive immunity in ALK-positive tumors

suggested reduced anti-tumoral immune functions [4]. B
cell analysis (Supplementary Figure S2E-F) revealed that
memory B cells and plasma cells were more abundant in
WT tumors (Figure 1K). Top DEGs of WT memory B cells
were enriched in oxidative phosphorylation pathways,
indicating functional activation and effector capabilities
[5] (Supplementary Figure S2G). Reconstructed B cell
receptor sequences showed a lower ratio of expanded to
non-expanded memory B cells in ALK-positive tumors
(Figure 1L), suggesting reduced humoral anti-tumoral
responses and activation. B cells are key components of
tertiary lymphoid structures (TLSs), vital for immunother-
apy responses [6]. We found positive correlations between
B cells and CD4+ T cells, with WT tumors having more
B cells (Figure 1M). ALK-positive tumors showed reduced
interactions among major components of TLS, suggest-
ing fewer TLS-like structures (Figure 1N), contributing
to inadequate anti-tumoral responses and unfavorable
TME for immunotherapy. Further experimental valida-
tions would be beneficial to confirm the existence of
TLS-like structures.
For CD8+ T cells, crucial in ICB treatment, we identi-

fied subtypes using marker genes (Supplementary Figure
S2H-I). DEG analysis showed tumor-reactive and exhaus-
tion genes (CXCL13, ENTPD1, ITGAE) were enriched
in WT tumors, while bystander-indicating NK receptors
(KLRK1, KLRC2) [7] were enriched inALK-positive tumors
(Figure 1O). T cell signature analysis confirmed these find-
ings (Figure 1P, Supplementary Table S4). This suggested
that ALK-positive “exhausted” CD8+ T cells became dys-
functional through non-canonical mechanisms, reducing
their effectiveness during ICB treatment.
Single-cell T cell receptor (TCR) sequencing showed

fewer expanded ALK-positive CD8+ T cells with smaller
TCR clonal sizes (Supplementary Figure S2J-K), indicat-
ing reduced T cell antigenicity. DEG analysis between
expanded and non-expanded effector and exhausted CD8+
T cells revealed WT tumors had increased expression of
exhaustion and tumor-reactivity genes, while the ALK-
positive tumors showed decreased expression of these
genes and increased NK receptor expression (Figure 1Q).
This reaffirmed impaired tumor reactivity and more
bystander-like CD8+ T cells in ALK-positive tumors.
We analyzed gene regulatory changes in exhausted

CD8+ T cell networks due to ALK rearrangement (Sup-
plementary Figure S2L-M). In the WT network, T cell
activation and exhaustion-related genes emerged as hubs
with IFNG as a top hub gene, consistent with its role
in effector T cell stimulation and reported deficiency in
ALK-positive patients [1] (Supplementary Figure S2N).

NK receptors like KLRK1 had high centrality in the ALK-
positive network. We re-evaluated hub genes based on
neighboring gene expression signatures. IFNG signature
score was higher in exhausted T cells of WT tumors, while
KLRK1 signature score was higher in exhausted T cells of
ALK-positive tumors (Figure 1R).
Since T cell exhaustion is also epigenetically regulated,

we identified CD8+ T cell subtypes using scATAC-seq
profiles and marker gene scores (Supplementary Figure
S2O-P). Although transcription of exhaustion and tumor-
reactivity genes was downregulated in ALK-positive CD8+
T cells, no clear depletion in chromatin accessibility was
observed (Supplementary Figure S2Q), suggesting tran-
scription factor (TF) binding caused these differences.
Motif analysis showed BATF-related TFs, linked to CD8+
T cell effector functions [8, 9], were enriched in WT,
while ETS1, important for NK cell differentiation [10], was
enriched in ALK-positive cells (Figure 1S).
We hypothesized that BATF is a key TF contribut-

ing to differences in T cell dysfunction. Using DEGs
in CD8+ T cells between WT and ALK-positive tumors
(see Figure 1O), we found WT DEGs had stronger BATF
motif enrichment (Figure 1T) and all exhaustion/tumor-
reactivity genes, except KRT86, had at least one peak with
BATF motifs (Figure 1U). Interestingly, KRT86, the only
exhaustion-related gene upregulated in expanded cells
from both groups (see Figure 1Q), lacked BATF motifs.
These findings suggested that differences in TF activities
could lead to differences in gene expression. Additionally,
WT exhausted T cells had more nearby peaks contain-
ing BATF motifs with higher co-accessibility, suggesting
stronger co-regulationwith nearby genomic regions inWT
compared to the ALK-positive tumors (Figure 1V).
In summary, this study provides key insights into the

TME of ALK-positive lung cancer through single-cell
multi-omics analysis, shedding light on poor immunother-
apy responses. ALK-positive tumors displayed aggres-
sive malignant phenotypes, enriched pro-tumoral myeloid
cells, and depleted adaptive T and B cells. ALK-positive
TAMs shifted away from inflammatory states, while
CD8+ T cells showed reduced tumor reactivity and more
bystander traits. We suggest that these CD8+ T cells
may have distinct dysfunction mechanisms. Epigenetic
analysis revealed depleted BATF motifs in ALK-positive
CD8+ T cells, indicating altered TF activity. These findings
highlight how ALK rearrangements drive an immuno-
suppressive TME, hindering effective immune responses,
and suggest a need for strategies to reinvigorate adaptive
immunity in ALK-positive lung cancer.
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