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Engineering heavy chain antibody-drug conjugates against

solid tumors for a one-shot kill

The inefficient tumor penetration of conventional antibod-
ies has hampered the effective use of antibody-drug conju-
gates (ADCs) against solid tumors [1-5]. Compared with
full-length antibodies and single-chain variable fragment
(scFv), nanobodies (Nbs) have much smaller molecular
weights, allowing them to achieve deeper tissue pene-
tration, and they have become an attractive candidate
platform for conjugating small-molecule drugs and trac-
ers because of their favourable thermostability and high
bioengineering potential [6, 7]. However, the clinical appli-
cation of Nb-based ADCs is limited due to the short
half-life of the Nbs [8]. This letter reports the identifi-
cation and biological characterization of an innovative
heavy chain antibody (HCAb)-drug conjugate based on
a Nb from a trophoblast cell surface antigen 2 (TROP2)-
immunized alpaca. HCAb has been verified to possess
fast and efficient penetration into tumor tissues as its
molecular weight (~80 kDa) is half that of a classical
antibody (~150 kDa) [9]. We mutated the sites serine
149 and lysine 200 of the HCAD to cysteine, and then
coupled the antimitotic agent monomethyl auristatin E
(MMAE) to the engineered surface cysteine with the
proteolyzable linker maleimidocaproyl-valine-citrulline-
p-aminobenzoyloxycarbonyl (MC-Val-Cit-PAB), resulting
in a conjugate abbreviated as C3 ADC (Figure 1A). Com-
pared with conventional RS7 ADC, C3 ADC exhibits excep-
tionally higher stability, much deeper tumor penetration,
significantly greater tumor uptake, and faster accumula-
tion at tumor sites, leading to improved tumor inhibition.
Notably, the engineered Nb-drug conjugate exhibits potent
‘one-shot kill’ efficacy against solid tumors. This study
presents, for the first time, a HCAb drug conjugate strategy
that can efficiently reduce tumor burden.

We screened and identified the TROP2 Nb following
our protocol for specific Nbs (Supplementary Figure SI).

List of abbreviations: ADC, Antibody-drug conjugates; CLSM,
confocal laser scanning microscopy; DAR, drug-to-antibody ratio; FDA,
the United States Food and Drug Administration; HCAb, heavy chain
antibody; NBs, Nanobodies; MMAE, monomethyl auristatin E; TROP2,
trophoblast cell surface antigen 2.

To enhance the expression and extend the half-life, the
Nb was fused with an hFc domain, termed C1 HCAD. C1
HCADb-DyLight 633 was more significantly endocytosed
by TROP2-overexpressing MDA-MB-231 cells in a time-
dependent manner than RS7-DyLight 633 (Figure 1B and
Supplementary Figure S2). In contrast, Huh7 cells without
TROP2 expression had poor internalization of C1 HCAb
(Supplementary Figure S3). These results indicated that C1
HCAD can be selectively taken up by tumor cells expressing
high levels of TROP2.

We then performed site-directed mutagenesis to design
a site-specific mutant antibody, C3 HCAb (Supplementary
Figures S4-S5). Here, lysosomal-cleavable MC-Val-Cit-
PAB was used as a linker and the antimitotic agent
MMAE was coupled to the engineered surface of cysteine,
forming the conjugate C3 ADC. For the positive ADC
control, site-directed mutation of the antibody portion
of the FDA-approved ADC Trodelvy (sacituzumab)
(hRS7) was performed at the same site, and the antibody
was conjugated with the same linker and payload. The
drug-to-antibody ratio (DAR) of C3 ADC was calculated
by hydrophobic interaction chromatography. C3 ADC
(DAR = 3.96) exhibited a homogeneous conjugation pro-
file, suggesting the superior accessibility of the mutated C3
HCADb with respect to site-specific conjugation (Figure 1C,
Supplementary Figures S6-S7). Next, we quantified the
affinity between C3 HCAb and hTROP2 using SRP (sur-
face plasmon resonance), revealing a KD value of 6.18
nmol/L (Figure 1D), indicating that C3 exhibited good
affinity. Furthermore, C3 ADC demonstrated favorable
thermostability and remarkable stability (Figure 1E,
Supplementary Figure S8). Cathepsin B did not impact
C3 HCAD but facilitated over 70% MMAE release from C3
ADC within 3 h (Supplementary Figure S9).

The ability of HCAb to bind to cell surface antigens
and be internalized was assessed. C3 ADC achieved an
internalization rate of approximately 50% in pancreatic
cancer cell (BxPC-3) and triple-negative breast cancer
cells (MDA-MB-231) within 3 h (Figure 1F, Supplementary
Figure S10).
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Engineering anti-TROP2 heavy chain ADCs. (A) Schematic of C3 ADC. (B) The process of C1 HCAb and RS7 internalization

by TROP2-positive MDA-MB-231 cells. (C) Hydrophobic interaction chromatography (HIC) analysis of C3 ADC. (D) Thermal stability of C3
ADC as measured by differential scanning calorimetry (DSC). (E) Characterization of the affinity of C3 ADC for hTROP2 using BIAcore
analysis. (F) Flow cytometry assessment of the binding abilities of 125s HCAb, C3 HCAb and C3 ADC to BxPC3 and MDA-MB-231 cells. (G)
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Penetration of C3 ADC, RS7 ADC and 125s ADC in BxPC3 tumour spheroids, as determined by confocal microscopy. (H) In vitro toxicity of
ADCs in MDA-MB-231 cells. (I) In vitro toxicity of C3 ADC in cancer cells with different percentage of TROP2 expression. (J) Penetration of
125s ADC, RS7 ADC and C3 ADC into BxPC3 tumor spheroids and their lysis abilities. (K) Time-lapse in vivo NIR FL images of nude mice
and ex vivo NIR FL images of major organs and tumors 7 days after injection of 125s HCAb, C1 HCAb and C3 HCAb. (L) in vivo
concentration-dependent antitumor activity of a single dose of C3 ADC in the BxPC3 xenograft model (The curves of 2 mg/kg and 4 mg/kg

almost overlapped). (M) Efficacy of C3 ADC against large tumors. When the mean volume of the implanted BxPC3 tumors was greater than
250 mm?, C3 ADC (2 mg/kg) was administered. (N) in vivo antitumor activity of a single dose of C3 ADC in a heterogeneous tumor model
(1x10° TROP2*+ BxPC3 cells mixed with 2x10° TROP2~ HCT116 cells). Results are presented as mean =+ s.d. Significant differences were
assessed using a two-way ANOVA with multiple comparisons (L, M, N). n = 5-6, **p < 0.01, and ***p < 0.001.

We evaluated the In vitro tumor penetration of the
conjugates using 3-dimensional (3D) tumor spheroids
composed of BXxPC-3 cells. The spheroids were incubated
with RS7 ADC, C3 ADC and 125s-vc-MMAE (a nonbinding
control ADC, abbreviated as 125s ADC). Strong fluores-
cence from the RS7 ADC was observed on the surface of
the tumor organoids. However, the fluorescence decreased
in the centre, indicating that RS7 could not penetrate the
inner tumor organoids. In contrast, the C3 ADC group
exhibited remarkably widespread fluorescence signals
throughout the tumor organoids, suggesting that the C3
ADC could penetrate deep into the solid tumor and be
more extensively distributed (Figure 1G).

The rapid internalization and lysosomal degradation of
receptors could contribute to effective ADC delivery and
intracellular release of the payload in tumor cells. The
majority of the internalized C3 ADCs were colocalized
with the lysosomal marker LAMP-2, suggesting that they
were successfully trafficked to lysosomes, as expected
(Supplementary Figure S11). TROP2-positive (TROP2")
tumor cells were treated with ADCs for 3 days. The C3
ADC and RS7 ADC- exhibited similar and potent In vitro
efficacy on MDA-MB-231 cells (Figure 1H and Supple-
mentary Figure SI2A). C3 ADC induced a dose-dependent
increase in cell apoptosis in BxPC3 cells, whereas no
significant increase of apoptotic cells was observed after
treatment with 1255 ADC (Supplementary Figure S13).
The potent killing was also observed in a heteroge-
neous mixture of BxPC3 and HCT116 cells (50% TROP2*
cells) with C3 ADC (Figure 1I and Supplementary Figure
S12B). Conversely, no inhibitory effect was observed on low
TROP2-expressing cells, such as HCT116 and PANC-1 cells.

In BxPC3 tumor spheroid models, the negative control
125s ADC mildly affected spheroid integrity, while RS7
ADC caused marked edge disruption by day 5. Interest-
ingly, C3 ADC treatment led to significant fragmentation,
which was evident on day 3, and full cleavage by day 5
(Figure 1J).

The specific accumulation of C3 HCAb in the tumor site
was monitored in a BXPC3 xenograft model (Figure 1K).
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C3 ADC exhibited potent dose-dependent antitumor activ-
ity in tumor xenografts, which were completely cleared
by a single dose of 2 mg/kg administration (Figure 1L).
There were no obvious signs of adverse events in any treat-
ment groups (Supplementary Figure S14). After a single
administration of C3 ADC, tumor proliferation was inhib-
ited and apoptosis was induced, with marked regression
of relatively large tumors observed compared to RS7 ADC
(Supplementary Figure S15 and Figure 1M). In addition, in
the BxPC3-Luc peritoneal model, a significant decrease in
bioluminescence signal was observed in C3 ADC-treated
mice (4 mg/kg, single injection, intravenously) after one
week (Supplementary Figure S16). C3 ADC also signifi-
cantly delayed MDA-MB-231 tumor growth and showed
better in vivo efficacy than RS7 ADC (Supplementary
Figure S17). The above results indicate that C3 ADC
exhibits powerful antitumor activity against pancreatic
and triple-negative breast tumor xenografts.

MMAE is a cell membrane-permeable toxin with
bystander effects and a good substrate for drug efflux
pumps. In the heterogeneous tumor model (1x10° TROP2*
BxPC3 cells mixed with 2x10° TROP2~ HCTI16 cells),
a single administration of C3 ADC markedly reduced
tumor size (Figure 1N, Supplementary Figure S18). C3 ADC
showed an enhanced bystander killing effect, which has
been speculated to be closely related to the efficient deep
penetration ability of C3 ADC into tumors. In addition, C3
ADC is well tolerated and has no obvious in vivo toxicity
(Supplementary Figures S19-S20).

In summary, our work demonstrates that a HCAb-based
ADC, C3 ADC, exhibits advantages such as slight side
effects, superior stability, rapid accumulation at tumor
sites, and deep tumor penetration. Compared with previ-
ously reported TROP2-targeted Nb-based ADC [10] (Sup-
plementary Table S1), this study presents, for the first time,
a HCAD drug conjugate strategy with a potent ‘one-shot
kill’ capability against large solid tumors, even those that
are heterogeneous. This work provides important techni-
cal methods and a theoretical basis for ADC development
and precise cancer treatment.
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