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Deciphering protective genomic factors of tumor
development in pediatric down syndrome via deep learning
approach to whole genome and RNA sequencing

Childhood solid tumors represent a significant public
health challenge worldwide, with approximately 15,000
new cases annually in the United States and an estimated
300,000 globally. Down syndrome (DS), a genetic disorder
characterized by an extra full or partial copy of chromo-
some 21, results in distinctive developmental and physical
features. Notably, individualswithDS exhibit a remarkable
resilience against solid tumors compared to the general
population, with an overall standardized incidence ratio
(SIR) of 0.45, despite their increased susceptibility to
hematologic malignancies [1]. This paradoxical observa-
tion has spurred extensive research aimed at uncovering
the biological underpinnings of this natural resistance to
solid cancers. Current theories suggest that the overex-
pression of specific genes on chromosome 21 may confer
protective benefits (e.g. RCAN1 contributes to antiangio-
genic effects), and alterations in immune system function
may enhance apoptosis and DNA repair pathways in
individuals with trisomy 21 DS [2]. The well-established
epigenetic effects of trisomy 21, which influence the entire
genome, are another potential contributor to the reduced
risk of solid tumors [3]. Nonetheless, these hypotheses face
significant challenges, such as the potential oversimpli-
fication of complex genetic interactions and the lack of
comprehensive genome-wide analyses. This study seeks to
critically evaluate the correlations between genomic vari-
ants and cancer clinical phenotypes in patients with DS,
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and proposes directions for future research into the genetic
and molecular mechanisms that confer cancer resistance
in DS, potentially transforming our understanding and
treatment of pediatric cancers.
We conducted an innovative unbiased data-driven anal-

ysis in 2,452 whole-genome sequencing (WGS) samples
with both DS individuals (n = 635) and pediatric oncology
cases (n = 280) within the Gabriella Miller Kids First pro-
gram project (https://kidsfirstdrc.org/) housed at the Chil-
dren’s Hospital of Philadelphia (Supplementary Figure S1).
Additionally, 284 RNA sequencing samples from human
peripheral blood mononuclear cells (PBMCs), a subset
of WGS samples, were also analyzed, offering unprece-
dented insights into the complex interplay of genetic and
immunological factors influencing cancer resistance.

1 CANCER PROTECTIVE AND
PREDISPOSING VARIANTS IN DS

The importance of each variant was calculated using deep
learning algorithms, and their corresponding weights to
DS cancer were generated based on linear algebra models
as described in the SupplementaryMaterials andMethods.
There were 2,523 unique cancer protective variants iden-
tified based on deep learning algorithms combined with
linear algebramodels in exonic, intronic, non-coding RNA
and 5’untranslated region (5’UTR) regions. The preva-
lence for cancer protective variants in the DS cancer
group (89.2%) is significantly higher compared to non-DS
cancer individuals (58.1%) (P = 1.11 × 10−40), indicat-
ing that DS individuals may be protected against solid
tumors by cancer protective variants identified in this
study. The functional enrichment analysis revealed can-
cer development-related pathways for distinct categories
of variants identified by WGS (Supplementary Figure S2).
Of note, the functional terms differed between protective
and predisposing variants, irrespective of the databases
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used, including Gene Ontology (GO), Kyoto Encyclopedia
of Genes andGenomes (KEGG), Protein Analysis Through
Evolutionary Relationships (PANTHER), database of reac-
tions, pathways and biological processes (Reactome), and
wiki-based resource for collection, maintenance and dis-
tribution of biological pathways (WikiPath). A total of 121
genes exhibited overlapping between the cancer-protective
and cancer-predisposing variants and their correspond-
ing genes (Supplementary Table S1-S2). This intersec-
tion of genes, with a very low likelihood of occurring
by chance (P = 0.002), attained statistical significance
within cancer essential pathways such as the p53 pathway
(False discovery rate [FDR] < 0.001) (Figure 1A). These
outcomes aligned with expectations regarding the mul-
tifunctional roles of genes in the intricate processes of
tumor development [4]. Variant type distributions revealed
distinctive patterns within the 121 genes that are com-
mon to both categories (Figure 1B). Specifically, cancer-
predisposing variants were more prevalent in exon regions
for nonsynonymous or synonymous variants, in contrast,
cancer-protective variants exhibited a higher prevalence
in non-coding regions, suggesting regulatory roles in
tumor development. Additionally, cancer-protective vari-
ants demonstrated earlier transcription activity than their
predisposing counterparts (Figure 1C). These findings sug-
gested that overlapping genes may serve dual roles as
either cancer enhancers or suppressors, depending on the
functional effects of the minor allele of a genetic variant.
The nature of their impact is contingent upon various fac-
tors, including but not limited to variant categories and
the genomic loci where these variants reside. To leverage
prior cancer genetic knowledge, we integrated data from
the Catalogue of Somatic Mutations in Cancer (COSMIC)
and pediatric cancer driver genes to construct a curated
list comprising 830 known cancer genes. Among the 121
overlapping genes, 18 were identified within this estab-
lished cancer driver gene set. For instance, the isocitrate
dehydrogenase 1 (IDH1) gene, associated with frequent
mutations across various cancer types and tissues of ori-
gin [5], harbors a cancer-protective variant in the 5’UTR
region (chr2:208254188-G-A) and a cancer-predisposing
variant in the tail region (intron 8 of 9, chr2:208239246-
A-G) (Figure 1D). Another example is gene inhibitor of
DNA binding 3 (ID3), a member of the ID protein family
implicated in cancer development, stemness, and metas-
tasis [6], manifesting a protective variant in the 5’UTR
(chr1:23559494-T-C) and a predisposing variant in the tail
of exon 1 as a nonsynonymous mutation (chr1:23559171-C-
G) (Figure 1D). Conversely, UBQLN1, a gene with cancer-
protective variants located in the gene’s tail (last intron)
(Figure 1D), suppresses cancer stem cell-like traits in non-
small cell lung cancer cells by regulating reactive oxygen
species homeostasis [7]. For 148 cancer predisposing vari-

ants identified in cancer driver genes, the prevalence is 25%
in DS cancer patients and 41.3% in non-DS cancer patients,
suggested that DS population are under protections for
cancer, and DS cancer patients may have different tumor
development mechanisms compared to non-DS children.

2 UP/DOWN-REGULATED GENES IN
DS PATIENTSWITH CANCER

Analysis of the 284 RNA-sequencing (RNA-seq) PBMC
samples yielded a highly valuable insight into the direc-
tion and magnitude of gene expression corresponding to
selected variants. The categorization of cancer-protective
and cancer-predisposing gene sets was further stratified
into four subgroups for functional enrichment analysis
based on direction. Notably, genes possessing cancer-
protective variants that were down-regulated (suppressed)
in cancer patients exhibited much stronger signals com-
pared to other sets (Figure 1E-F). This phenomenon,
especially evident in pathways relevant to tumor devel-
opment such as Proteoglycans in cancer (FDR < 0.001)
and Central carbon metabolism in cancer (FDR < 0.001),
emphasized the significance of protective variants as dom-
inant factors in tumor development among DS patients.
A total of 1,785 genes with cancer-protective variants were
presented, and genes with highest fold-changes in RNA-
seq results while known as cancer driver genes were
shown in Supplementary Table S3. Among 1,785 genes, 983
genes were found to be downregulated in cancer patients.
Intriguingly, 86 of these down-regulated genes, mapped
by 109 cancer-protective variants (Supplementary Table
S4-S5), were identified as known cancer driver genes.
These 86 suppressed genes in cancer patients with pro-
tective variants were not only associated with essential
cancer pathways (FDR < 0.001) (Supplementary Figure
S3A) but are also significantly enriched in cancer treat-
ment response pathways, including epidermal growth
factor receptor (EGFR) tyrosine kinase inhibitor resistance
(FDR < 0.001) and programmed death-ligand 1 (PD-L1)
expression and programmed cell death protein 1 (PD-1)
checkpoint pathway in cancer (FDR < 0.001) (Supple-
mentary Figure S3B-C). Referring to the National Cancer
Institute’s approved drug list, gene targets within the 86
genes are shown in Supplementary Table S6.

3 ROLE OF CANCER-PROTECTIVE
VARIANTS IN GENE REGULATION

Our study suggests that genes with cancer-protective vari-
ants down-regulated in cancer patientsmay act as a critical
factor for the protective mechanism against solid tumors
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F IGURE 1 Functional analysis of cancer protective/ predisposing variants corresponding genes. (A) Functional enrichment for 121
corresponding genes with both cancer protective/predisposing variants: the enrichment analysis was performed using DAVID and
WebGestalt, cancer essential pathways such as the p53 pathway were identified. (B) Proportions of different variant categories of cancer
protective vs predisposing variants: bar graphs with the counts of variants in different genomic locations between cancer protective vs
predisposing variants, variant type distributions revealed distinctive patterns for both categories. (C) Normalized locus of protective vs
predisposing variants in overlapped genes: the locus was normalized based on transcript length and directions; cancer-protective variants
demonstrated earlier transcription activity than their predisposing counterparts. (D) Examples of known cancer driver genes include
UBQLN1, ID3, IDH1: these examples illustrate earlier genomic locus of cancer protective variants in known cancer driver genes. (E)
Functional enrichment for genes corresponding to cancer protective variants: the enrichment analysis was performed using DAVID and
WebGestalt, functional terms with blue color corresponding to genes suppressed in cancer patients based on RNA-seq DGE analysis and
orange associated with genes active in cancer patients. (F) Functional enrichment for genes corresponding to cancer predisposing variants:
the enrichment analysis was performed using DAVID and WebGestalt, functional terms with blue color corresponding to genes suppressed in
cancer patients based on RNA-seq DEG analysis and orange associated with genes active in cancer patients. Abbreviations: DAVID, DAVID
Bioinformatics platform; WebGestalt, WEB-based Gene SeT AnaLysis Toolkit; UBQLN1, ubiquilin 1; ID3, inhibitor of DNA binding 3; IDH1,
isocitrate dehydrogenase (NADP[+]) 1; DGE, differential gene expression.

in DS patients. A nonsynonymous cancer-protective vari-
ant (chr7:55205451-A-C) in EGFR exon 28, resulting in
the truncation of the C-terminal domain of EGFR, has
been previously reported to be associated with glioblas-
toma multiforme (GBM) patients [8]. This variant in
EGFR demonstrated a high correlation coefficient (cor-
relation coefficient > 0.7) with another nonsynonymous

cancer-protective variant (chr7:55205451-A-C) in exon 8 of
SEPTIN14, and theEGFR-SEPTIN14 fusionhas been linked
to glioblastoma with Icotinib-sensitive drug responses
[9]. Furthermore, a variant (chr7:55255565-T-C) for the
ncRNA ELDR (EGFR long non-coding downstream RNA)
was identified in exon 1, with a previous study showing
that knockdown of ELDR resulted in the downregulation
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of EGFR, leading to the inactivation of downstream
molecules, and it is considered a therapeutic potential tar-
get in cancer [10]. For the remaining genes down-regulated
in cancer patients with cancer-protective variants that are
not recognized as cancer driver genes, they also exhibit
enrichment in cancer-related pathways, including the
AMPK signaling pathway (FDR= 0.032), PI3K-Akt signal-
ing pathway (FDR = 0.004), and Focal adhesion (FDR =

0.044) (Supplementary Figure S3D-F).

4 UNLOCKING CANCER SOLUTIONS
THROUGH DS GENETICS

This study significantly advances our understanding of
how genetic factors associated with DS contribute to a
reduced risk of solid tumor development. Through an
examination of more than 2,000 WGS samples, we iden-
tified genetic variants playing important roles in either
protecting or predisposing individuals to cancer. With the
revealed correlations between protective variants, cancer
mechanisms, and treatment response pathways, our find-
ings warrant exploring new therapeutic interventions at
the gene or pathway level. The development of targeted
therapies, inspired by the natural protective mechanisms
found in DS individuals, could transform the landscape of
cancer treatment, with far-reaching implications extend-
ing beyond the DS population.
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