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Genomic imprinting biomarkers for cervical cancer risk

stratification

Cervical cancer remains a significant global public health
issue due to its high incidence and mortality. Current clin-
ical guidelines recommend screening for high-risk human
papillomavirus (hrHPV)-DNA alongside a Thinprep cyto-
logic test (TCT) before further medical evaluation [1].
The hrHPV-DNA test detects 14 high-risk HPV geno-
types including the predominant hrHPV16/18, which can
cause cervical abnormalities that may progress to can-
cer if untreated. TCT is paired with the hrHPV-DNA
test to pathologically classify cervical specimens into cat-
egories based on increasing malignancy risks. Despite
the high sensitivities, both tests have high false positive
rates which lead to unnecessary colposcopy while HPV
is cleared naturally in most women without progressing
into lesions. To reduce overdiagnosis and overtreatment,
several DNA methylation detections [2, 3] have been devel-
oped for triaging the malignancy risk of hrHPV-positive
cervical lesions, but have yet to become clinically avail-
able. Here, we proposed an epigenetic biomarker panel
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based on imprinting alterations as a high-performance
triage method to improve cervical cancer risk assessment
accuracy in hrHPV-positive women.

Loss of imprinting (LOI), an early molecular event in
carcinogenesis, is an epigenetic phenomenon when a nor-
mally silenced allele of the imprinted gene is activated
and expressed [4]. Using the quantitative chromogenic
imprinted gene in-situ hybridization (QCIGISH) to visu-
alize and quantify imprinted genes’ transcription sites in
the nuclei, early epigenetic changes through LOI have
been shown as effective biomarkers for detecting multiple
malignancies [5]. In the present study, we first screened
imprinted gene candidates using resected cervical tissue
samples and subsequently developed a cancer risk strati-
fication method based on cytological specimens diagnosed
by colposcopy and biopsy (Supplementary Figure S1). The
diagnostic model was blindly validated in prospectively
collected cytological samples by comparing the QCIGISH
results with colposcopy biopsy pathology. Full study pro-
tocols are detailed in the Supplementary file.

To identify the most efficient biomarker panel for dif-
ferentiating malignancy in cervical lesions, we evaluated
four candidate imprinted genes based on prior research
evidence and targeted literature review of female cancers:
guanine nucleotide-binding protein, alpha-stimulating
complex locus (GNAS) related to thyroid cancer, osteosar-
coma, and skin cancer [6], small nuclear ribonucleoprotein
polypeptide N (SNRPN) associated with seminoma, yolk
sac tumor, and acute myeloid leukemia [7], histocompat-
ibility minor 13 (HM13) linked to breast cancer [8], and
small nuclear ribonucleoprotein 13 (SNUI3) involved with
lung cancer [9]. QCIGISH was applied to 79 formalin-fixed
paraffin-embedded samples comprised of 30 benign, 13
cervical intraepithelial neoplasia grade 1 (CIN1), 14 CIN3,
and 22 malignant cases (Supplementary Table SI) for all
candidates based on visual evaluation using bright field
microscopy. We quantitatively analyzed aberrant allelic
expression via Ny, Ny, N, and N3, signals, and calculated
bi-allelic (BAE), multi-allelic (MAE), and total expres-
sion (TE) measurements (Figure 1A,B, Supplementary
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Figures S2, S3). Histopathological classifications were
dichotomized by combining benign with CIN1 cases and
combining CIN3 with malignant cases. Significant differ-
ences in BAE, MAE, and TE measurements were observed
for GNAS, HM13, and SNUI3, with higher area under the
receiver operating characteristic curve (AUC) values (all P
< 0.05), except for SNRPN (Supplementary Figures S4, S5).
These findings substantiated the formulation of a three-
gene epigenetic imprinting biomarker panel composed of
GNAS, HM13, and SNUI3 for model development.

We subsequently performed QCIGISH detection for the
three pre-screened imprinted genes on 75 retrospectively
collected cytological samples with biopsy-confirmed diag-
noses of 29 benign, 15 CIN1, 15 CIN3, and 16 malignant
cases to train a cervical cancer risk stratification model.
To refine allelic expression measurements for malignancy
differentiation, we extended the N3, measurements to
N3-Ny, N5-Ng, N;-Ng, and Ny, allowing for more pre-

cise stratification of imprinting alterations to MAE3-4,
MAES5-6, MAE7-8, and MAE9+, respectively, and utilized
fluorescent microscopy to capture the QCIGISH images
(Figure 1C,D, Supplementary Figure S6). Imprinting alter-
ations of all genes were significantly elevated in the CIN3
+ malignant group than in the benign + CIN1 group
(Figure 1E), showing moderate to high discrimination
between groups (Supplementary Figure S7). We applied
binary logistic regression to classify patients into cervical
cancer low- or high-risk groups, with model development
and parameters detailed in Supplementary Figure S8. To
accurately estimate the model performance with a limited
number of samples, we optimized model parameter set-
tings involving the imprinting alteration biomarkers, gene
weight combinations and dichotomization threshold crite-
ria through a 500-cycle internal bootstrap (Supplementary
Figure S9, Supplementary Tables S2-S5). The optimal
imprinted gene-weighted model improved discrimination,

FIGURE 1 The development and validation of the QCIGISH model for cervical cancer risk stratification. (A) Schematic diagram of the

QCIGISH technology as applied on bright field microscopy images. Blue components in the image are cell nuclei while red dots represent the
activated gene loci. More red dots indicate aberrant allelic expression. Ny, N;, N,, and N3, refer to the total count of cell nuclei observed with
0,1, 2, and 3 or more dots, respectively, with N, and N, collectively representing normal allelic expression, while N, and N, both indicating
aberrant allelic expression. BAE, MAE, and TE were computed by applying the values determined for Ny, N;, N, and N3, using the given
equations. Higher values for BAE, MAE, and TE indicate elevated epigenetic imprinting alterations. (B) Representative images of bright field
QCIGISH detection results for benign, CIN1, CIN3, and malignant cervical tissue specimens showing a generally increasing allelic expression
quantified using BAE, MAE, and TE measurements. (C) Schematic diagram of the QCIGISH technology as applied on fluorescent microscopy
images. Blue components in the image are cell nuclei while green dots represent the activated gene loci. More green dots indicate aberrant
allelic expression. N, Ny, N, N3, Ny, N5, Ng, N, Ng, and Ny, refer to the total count of cell nuclei observed with 0,1, 2, 3, 4,5, 6, 7, 8, and 9 or
more dots, respectively, with N, and N, collectively representing normal allelic expression, while N,, N3, N4, Ns, Ng, N5, Ng, and Ny, all
indicating aberrant allelic expression. BAE, MAE3-4, MAE5-6, MAE7-8, MAE9+, and TE were computed with the values determined for N,
Ny, N,, N3, Ny, N5, N, N5, Ng and Ny, using the given equations. Higher values for BAE, MAE3-4, MAES5-6, MAE7-8, MAE9+, and TE
indicate higher epigenetic imprinting alterations. (D) Representative images of fluorescent QCIGISH detection results for benign, CIN1,
CIN3, and malignant cervical cytological specimens showing a generally increasing allelic expression quantified using BAE, MAE3-4,
MAES5-6, MAE7-8, MAE9+, and TE measurements. (E) Elevated epigenetic imprinting alterations in terms of BAE, MAE3-4, MAE5-6,
MAE7-8, MAE9+, and TE demonstrated for the combined CIN3 and malignant categories as compared to cases diagnosed as benign and CIN1
for the GNAS, HM13 and SNUI3 imprinted genes. Robust Rank-Order Test was applied during statistical evaluation. *P < 0.05. **P < 0.01. ***P
< 0.001. ns, not significant. (F) Improved malignancy discrimination performance in terms of the AUC demonstrated for the individual gene
models employing the top four best performing biomarker features, and the final combined gene model utilizing weights equal to 40%, 40%,
and 20% for the GNAS, HM13 and SNUI3 imprinted genes, respectively, as compared to the individual gene models employing the top four
best performing biomarker features. (G) Logistic curve plot of the estimated cervical cancer probabilities for the final combined gene model as
evaluated on the model validation set showing sufficient discrimination between benign and CINI cases against CIN3 and malignant cases.
(H) Diagnostic performance in the model validation set showing 93.8% sensitivity (95% CI 85.4%-100.0%) on combined CIN3 and malignant
cases, 83.60% specificity (95% CI 75.1%-92.1%) on combined benign and CIN1 cases, 71.4% PPV (95% CI 57.8%-85.1%) on combined CIN3 and
malignant cases, and 96.8% NPV (95% CI 92.5%-100.0%) on combined benign and CIN1 cases. Wald’s 95% confidence intervals determined
using normal approximation were used. (I) Triage performance of the QCIGISH diagnostic model on two groups of hrHPV-positive patients:
(1) detected with 16/18 genotypes and (2) detected with non-16/18 genotypes. (J) Triage performance of the QCIGISH diagnostic model on two
combined groups of patients who are clinically recommended for colposcopy: (1) hrHPV-positive for 16/18 genotypes; and (2) hrHPV-positive
for other genotypes but with TCT grades evaluated as atypical squamous cells of undetermined significance and above (ASCUS+). Group
sample sizes are represented as n. "Cases with hrHPV16/18, regardless of the TCT diagnosis, were included in the analysis. The ten cases
detected as hrHPV-positive but with indeterminate genotype were all diagnosed as TCT ASCUS+ and were included in the analysis.
Abbreviations: QCIGISH, Quantitative chromogenic imprinted gene in-situ hybridization; CIN, Cervical intraepithelial neoplasia; BAE,
Bi-allelic expression; MAE, Multi-allelic expression; TE, Total expression; GNAS, Guanine nucleotide-binding protein, alpha-stimulating
complex locus; HM13, Histocompatibility minor 13; SNUI13, Small nuclear ribonucleoprotein 13; AUC, Area under the receiver operating
characteristic curve; CI, confidence interval; HPV, Human papillomavirus; TCT, Thinprep cytologic test; ASCUS, Atypical squamous cells of
undetermined significance; hrHPV, High-risk human papillomavirus.
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achieving an overall AUC of 0.87 (95% confidence interval
[CI], 0.78-0.96) (Figure 1F), including an apparent sen-
sitivity of 87.1% (95% CI, 75.3%-98.9%) and specificity of
75.0% (95% CI, 62.2%-87.8%) (Supplementary Table S5).
Logistic regression curves were plotted using the estimated
cervical cancer probabilities against the QCIGISH diagnos-
tic indices for each gene and their weighted equivalents
(Supplementary Figures S10-S12).

We independently and blindly validated the model in 105
cytological samples diagnosed by colposcopy and biopsy,
including 49 benign, 24 CIN1, 16 CIN3, and 16 malig-
nant cases (Figure 1G). The diagnostic sensitivities were
100% for malignant cases and 93.8% (95% CI, 85.4%-100%)
for CIN3 and malignant cases combined (Figure 1H).
Diagnostic specificities were estimated at 89.8% (95% CI,
81.3%-98.3%) for all confirmed benign cases and 83.6%
(95% CI, 75.1%-92.1%) for benign and CIN1 cases com-
bined, which could help improve the accuracy of clinical
assessments of cervical lesions when used in combina-
tion with hrHPV-DNA tests [10]. For QCIGISH-positive
cases, 71.4% (95% CI, 57.8%-85.1%) were histopathologically
CIN3 and malignant, while 96.8% (95% CI, 92.5%-100%)
of QCIGISH-negative cases were benign and CIN1. More-
over, the QCIGISH positivity rate in CIN3 cases was 87.5%
(Figure 1H), demonstrating diagnostic viability among
molecular triage methods [2, 3]. The high sensitivity could
potentially aid in reducing false negatives during triage,
which is crucial for detecting cervical abnormalities early.

The model performance evaluation across different HPV
genotypes showed that QCIGISH triage was sufficiently
accurate for assessing the malignancy risks among hrHPV-
positive women (Figure 1I). Particularly for hrHPV16/18
genotype patients, 92.0% of the QCIGISH-negative cases
were confirmed benign or CIN1, while 82.6% of the
QCIGISH-positive cases were CIN3 or malignant. Further-
more, 100% of the QCIGISH-negative cases had benign
or CIN1 diagnoses for non-hrHPV16/18 genotypes, while
50.0% of the QCIGISH-positive cases were CIN3.

Additionally, we analyzed the QCIGISH triage perfor-
mance on two groups recommended for colposcopy: (1)
hrHPV16/18 genotype patients; and (2) non-hrHPV16/18
genotype patients with TCT grades evaluated as atyp-
ical squamous cells of undetermined significance and
above (ASCUS+) [1]. Most benign and CINI1 cases
were QCIGISH-negative, contributing 89.7% (95% CI,
80.2%-99.3%) and 68.4% (95% CI, 47.5%-89.3%), respec-
tively (Figure 1J). With epigenetic imprinting biomarkers,
unnecessary colposcopy referrals could be significantly
avoided, further advancing the diagnostic accuracy of
HPV and TCT co-testing and ultimately improving the
subsequent medical management for these patients (Sup-
plementary Figure S13).

In conclusion, the preliminary findings demonstrated
the QCIGISH’s robustness as a novel cervical cancer risk
assessment test based on aberrant expression of GNAS,
HM13, and SNUI13 imprinted genes, despite the recognized
need for further validation in a larger cohort. These results
revealed the high diagnostic sensitivity and specificity of
this model, which can be useful when applied adjunc-
tively with HPV and TCT co-testing, allowing physicians
to rule out malignancy more confidently while reducing
overdiagnosis for benign and low-risk cervical lesions in
hrHPV-positive cases. Altogether, QCIGISH is a promising
triage alternative, with the potential to improve the clinical
diagnostic efficacy and medical management of cervical
lesions.
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Additional supporting information can be found online
in the Supporting Information section at the end of this
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