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Abstract
The advent of immunotherapy has significantly reshaped the landscape of cancer
treatment, greatly enhancing therapeutic outcomes for multiple types of can-
cer. However, only a small subset of individuals respond to it, underscoring
the urgent need for new methods to improve its response rate. Ferroptosis, a
recently discovered form of programmed cell death, has emerged as a promis-
ing approach for anti-tumor therapy, with targeting ferroptosis to kill tumors
seen as a potentially effective strategy. Numerous studies suggest that induc-
ing ferroptosis can synergistically enhance the effects of immunotherapy, paving
the way for a promising combined treatment method in the future. Neverthe-
less, recent research has raised concerns about the potential negative impacts
on anti-tumor immunity as a consequence of inducing ferroptosis, leading to
conflicting views within the scientific community about the interplay between
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ferroptosis and anti-tumor immunity, thereby underscoring the necessity of a
comprehensive review of the existing literature on this relationship. Previous
reviews on ferroptosis have touched on related content, many focusing primarily
on the promoting role of ferroptosis on anti-tumor immunity while overlooking
recent evidence on the inhibitory effects of ferroptosis on immunity. Others have
concentrated solely on discussing related content either from the perspective of
cancer cells and ferroptosis or from immune cells and ferroptosis. Given that both
cancer cells and immune cells exist in the tumor microenvironment, a one-sided
discussion cannot comprehensively summarize this topic. Therefore, from the
perspectives of both tumor cells and tumor-infiltrating immune cells, we sys-
tematically summarize the current conflicting views on the interplay between
ferroptosis and anti-tumor immunity, intending to provide potential explana-
tions and identify thework needed to establish a translational basis for combined
ferroptosis-targeted therapy and immunotherapy in treating tumors.

KEYWORDS
anti-tumor immunity, ferroptosis, ferroptosis-targeted therapy, immunogenic cell death,
immunotherapy, tumor microenvironment

1 BACKGROUND

Ferroptosis, a distinct form of programmed cell death [1],
is characterized by iron-dependent reactive oxygen species
(ROS) generation and consequent peroxidation of phos-
pholipids containing polyunsaturated fatty acid chains
(PUFA-PLs) [2], which lead to membrane rupture and
increased permeability, culminating in cell death [3, 4].
Key regulators of this process include glutathione peroxi-
dase 4 (GPX4) [5], system Xc-cystine/glutamate antiporter
(a transmembrane protein complex containing subunits
SLC7A11 and SLC3A2, referred to as system Xc- through-
out the review article) [6], ferroptosis suppressor protein
1 (FSP1) [7, 8], guanosine triphosphate cyclohydrolase 1
(GCH1) [9], and acyl-CoA synthetase long-chain family
member 4 (ACSL4) [10]. Themolecularmechanisms of fer-
roptosis regulation have been comprehensively reviewed
elsewhere [11, 12]; hence, we will not delve into them in
detail in this article.
Ferroptosis was initially described in cancer research

when erastin and RSL3 were discovered as potent killers
of RAS mutant cancer cells [13, 14]. It has since been asso-
ciated with a critical role in degenerative and neoplastic
diseases [15]. Various cancer-related signaling pathways
can regulate cancer cell ferroptosis [16, 17], and cer-
tain cells, due to their unique metabolism, high ROS
levels, and specific mutations, are more susceptible to
ferroptosis [18, 19]. Notably, ferroptosis has proven sig-
nificant in overcoming resistance to traditional therapies
[18, 20], with studies indicating that anti-oxidative mecha-

nisms crucially contribute to therapy resistance in tumors
[21]. Recent findings also hint at ferroptosis’s substantial
role in inhibiting tumor metastasis [22, 23]. Given these
insights, the therapeutic targeting ferroptosis has gained
prominence in cancer treatment discussions.
The link between tumors and immunity was ini-

tially acknowledged with the introduction of the “cancer
immunosurveillance” concept [24, 25], which later evolved
into “cancer immunoediting”. This principle underscores
the immune system’s dual role in battling tumors. On the
one hand, the immune system can detect and eliminate
early-stage tumors; on the other hand, it may inadver-
tently select tumor cells that evade immune recognition,
thereby promoting tumor progression [26, 27]. Several
immune cells within the tumor microenvironment (TME)
significantly contribute to this process [25, 28]. For exam-
ple, CD8+ T cells and natural killer (NK) cells perform
tumor-eliminating functions [29, 30], while dendritic cells
(DCs) support this process by presenting antigens to T
cells [31]. Certain immune cells, such as tumor-associated
macrophages (TAMs), serve dual roles in anti-tumor
immunity due to their ability to polarize into the anti-
tumor M1 phenotype and the pro-tumor M2 phenotype,
yet they primarily manifest pro-tumor effects within the
TME [32, 33]. Immune inhibitory cells such as regula-
tory T cells (Tregs) and myeloid-derived suppressor cells
(MDSCs) are critical in suppressing anti-tumor immu-
nity and accelerating tumor progression [34, 35]. Tumor
immunotherapy, including immune checkpoint inhibitors
(ICIs), seeks to rejuvenate the immune system’s ability
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to eradicate tumors [36]. Despite the demonstrated effi-
cacy of ICIs in various cancers [37], the response rate
remains low inmost solid tumors, aside from certain types
such as melanoma, or tumors exhibiting favorable predic-
tive factors for ICI treatment outcomes, like microsatellite
instability-high (MSI-H) [38], thereby underscoring the
need for improved therapeutic outcomes.
Immunogenic cell death (ICD) is a specific type of cell

death capable of activating the immune system and syn-
ergizing with ICIs [39–41]. Characterized by the release
of various damage-associatedmolecular patterns (DAMPs)
such as high mobility group protein 1 (HMGB1), adeno-
sine triphosphate (ATP), and calcium reticulum protein
(CRT) [42, 43], ICD acts as an adjuvant to trigger immune
responses [44, 45]. Current research indicates that ICD
can enhance the therapeutic effects of conventional treat-
ments and improve the response rate when combined
with ICIs [39–41]. Recent studies have suggested the
potential of integrating ferroptosis-targeted therapy with
immunotherapy for tumor treatment [46, 47]. Several stud-
ies have indicated a cooperative effect between ferroptosis
induction and ICIs [48–58], suggesting a promising future
for this combined treatment approach. However, further
investigation has shown that ferroptosis has a complex
impact on anti-tumor immunity, affecting the feasibil-
ity of such a combination strategy. While some studies
regard ferroptosis as a form of ICD [59–63], a recent study
offers a contrary view [64], with additional research imply-
ing that ferroptosis may even exert immunosuppressive
functions [65–67]. Moreover, inducing ferroptosis affects
various immune cells in the TME, potentially suppressing
anti-tumor immunity [67]. The relationship between fer-
roptosis and anti-tumor immunity is intricate and contra-
dictory, necessitating further comprehensive and profound
understanding to lay a robust translational foundation for
the future of this combined therapy.
Since concerns have been raised regarding pro-

ferroptotic compounds’ potential detrimental effects on
the immune system [67, 68], which could limit their clin-
ical use, a better understanding of the interplay between
ferroptosis and anti-tumor immunity is crucial for devel-
oping more effective strategies for ferroptosis-targeted
therapy. Previous studies have primarily focused on the
connection between ferroptosis and either tumor cells
[69, 70] or immune cells in the TME [68, 71]. Given that
the TME comprises both cancer and immune cells [72,
73], assessing the pros and cons of targeting ferroptosis
as an anti-tumor treatment requires a comprehensive
view. Therefore, a thorough literature review on the
interplay between ferroptosis and anti-tumor immunity
is vitally important. In this review, we initially explore
this relationship from the perspective of cancer cells to
understand whether ferroptosis activates the immune

system to enhance anti-cancer effects or instead inhibits
the immune response. We then focus on TME immune
cells to discuss the potential synergies of combining
pro-ferroptotic agents with immunotherapy and the
possible negative impacts of ferroptosis inducers on these
cells. Finally, we propose perspectives and therapeutic
considerations for combining ferroptosis-targeted therapy
and immunotherapy in tumor treatment.

2 THE CROSSTALK BETWEEN
FERROPTOSIS AND ANTI-TUMOR
IMMUNITY IN CANCER CELLS:
WHETHER FERROPTOSIS IN CANCER
ACTIVATES THE ANTI-TUMOR
IMMUNITY OR CONVERSELY IMPEDES
IMMUNE RESPONSES?

2.1 Immunogenicity of ferroptotic
cancer cells: is ferroptosis a kind of ICD?

2.1.1 Supporting evidence

As research on ferroptosis deepens, attention has turned to
whether ferroptosis is a type of ICD. ICD is characterized
by three hallmarks: DAMPs, cytokines, and antigenicity
[40] (Figure 1). To determine if ferroptosis qualifies as
ICD, we can initially assess whether it exhibits these three
features.
In terms of DAMPs, studies have reported that treat-

ing cancer cells (HT1080 and PANC1 cell lines) with
ferroptosis-inducing compounds led to the release of
HMGB1, which depended on the autophagic pathway
[74]. A subsequent research showed that HMGB1 released
from ferroptotic cells relied on the advanced glycosylation
end-product specific receptor (AGER) in macrophages for
functionality but not on toll-like receptor (TLR) 4 [74].
Another study found that early ferroptotic cancer cells
(MCA205 and GL261 cell lines treated with RSL3 for 1 h
and 3 h, respectively) released the highest level of HMGB1,
promoting the maturation of bone marrow-derived DCs
[59]. Furthermore, ATP concentration also increased in
early ferroptotic cells. Blocking the P2X7 purinergic chan-
nel in mice significantly weakened the immune protection
provided by ferroptotic cancer cells [59]. RSL3 treatment
significantly increased the expression of HMGB1 and CRT
in head and neck squamous cell carcinoma xenografts
[62]. Human head and neck squamous cell carcinoma
specimens with low expression of GPX4 tend to express
high CRT, which also suggests that ferroptosis may
increase CRT exposure [62]. Dihydroartemisinin (DHA)
can induce ferroptosis in CT26 cells [75]. Additionally,
the Zn-pyrophosphate (ZnP)@DHA/PYRO-Fe core-shell
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F IGURE 1 Three hallmarks of ICD: DAMPs, cytokines, and antigenicity. There are three hallmarks of ICD: DAMPs, cytokines, and
antigenicity. HMGB1, ATP, and CRT are classical DAMPs, among which HMGB1 and ATP are released by dying cells, while CRT is expressed
on the surface of dying cells. Antigens released by dying cells are cross-presented by DCs to CD8+ T cells by MHC I molecules. DAMPs and
cytokines provide adjuvants, while antigens provide antigenicity, which together promote the generation of anti-tumor immunity. The
resulting cytotoxic CD8+ T cells migrate to the tumor site, where they eliminate antigen-expressing cancer cells. Abbreviations: ATP:
adenosine triphosphate; CRT: calcium reticulum; DAMPs: damage-associated molecular patterns; HMGB1: high mobility group protein 1;
MHC-I: major histocompatibility complex class I; TCR: T-cell receptor; TME: tumor microenvironment.

nanoparticles, composed of a cholesterol derivative of
DHA (Chol-DHA) and pyropheophorbide-iron (PYRO-
Fe), enhanced the pro-ferroptotic effects of DHA and
increased the exposure of CRT as well as the release of
HMGB-1 in CT26 cells [75]. The radiated tumor cell–
released microparticles (RT-MP) released by irradiated
lung carcinoma cells can cause ferroptosis of tumor
cells, and the release of extracellular CRT and ATP

in the medium increased after treatment with RT-MP
[76]. Similarly, in recent studies investigating the use of
nanomedicines to induce ferroptosis for cancer treatment,
a few findings have highlighted the release of DAMPs by
drug-induced ferroptotic cancer cells [52, 54, 60, 62, 77–85],
and in several studies, the promotion of DC maturation
has also been reported [54, 82–85]. In addition to the most
well-known DAMPs, namely HMGB1, ATP and CRT,
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Liu et al. [63] found that proteoglycan decorin (DCN)
was also a DAMP released by ferroptotic cells (HT1080,
HeLa, PANC1 and KPC cells). Its release depended on the
autophagy pathway. After discharge, it acted on AGER in
macrophages to promote inflammation and anti-tumor
immunity, which can be enhanced byHMGB1. The release
of DCN precedes other DAMPs [63].
Ferroptotic cancer cells have also been found to release

cytokines. Wiernicki et al. [64] evaluated the role of fer-
roptosis in inducing ICD. They successfully detected the
release of C-X-Cmotif chemokine ligand 1, tumor necrosis
factor, and interferon (IFN)-β in the supernatant of fer-
roptotic MCA205 cells, which demonstrated the ability of
ferroptotic cancer cells to secret cytokines. Nonetheless,
their subsequent experiments did not support ferroptosis
as ICD [64] (see section 1.1.2 Contradictory Evidence).
Compared with DAMPs and cytokines, our current

understanding regarding the impact of ferroptosis on the
antigenicity of cancer cells remains limited. Currently,
there is no direct evidence supporting the involvement
of ferroptosis in antigenicity regulation. Only a few stud-
ies have speculated on the existence of this effect based
on observations of immune system activation in response
to ferroptotic cancer cells. For instance, to improve the
efficacy of cancer treatment, Zhang et al. [86] developed
a biomimetic magnetosome composed of a ferroptosis
inducer and immune modulators. This magnetosome sub-
stantially increased CD4+ and CD8+ T cells and M1 TAMs
in the TME of B16F10 and 4T1 tumor models. Importantly,
even in the absence of immune modulators, the ferrop-
tosis inducer alone moderately increased the proportion
of anti-tumor immune cells, potentially due to the release
of immunogenic antigens from ferroptosis-induced can-
cer cells [86]. However, this is a speculative hypothesis
and requires verification. Further research is needed to
elucidate the role of ferroptosis in antigenicity.
While the assessment of the three hallmarks can pro-

vide an initial indication of whether ferroptosis qualifies
as an ICD, the gold standard for determining the immuno-
genicity of a specific cell deathmodality is the prophylactic
vaccination model [87, 88]. In this prophylactic vaccina-
tion model, mouse cancer cells are initially exposed to a
potential inducer of ICD in vitro. Subsequently, the treated
cancer cells are administered as a subcutaneous vaccine
without any immunological adjuvant and by removing
any exogenous chemical entities. Approximately 1-2 weeks
later, mice were subcutaneously challenged with living
cancer cells of the same type, using a minimal dose known
to generate progressing lesions in naïve mice with 100%
effectiveness. The mice were then monitored for tumor
incidence and growth for 40-60 days. The results showed
that if the cancer cells in the vaccine indeed underwent
ICD, the vaccine could confer immune protection to the

mice, resulting in a lower tumor incidence or growth rate
when rechallenged with the cancer cells [87, 88]. Efimova
et al. [59] conducted both in vitro and in vivo studies using
MCA205 cells to investigate the immunogenicity of fer-
roptosis. They found that early ferroptotic MCA205 cells
(RSL3 treatment for a short time) not only releasedDAMPs
and promoted bone marrow-derived DCs maturation in
vitro but also conferred protection against tumors in a
prophylactic vaccination model in vivo. These findings
strongly suggest that ferroptosis qualifies as a form of ICD
[59].
Despite a considerable body of evidence suggesting fer-

roptosis as a form of ICD, as referenced in this section, it is
crucial to note that definitive evidence is presently absent.
The existing evidence primarily focuses on the release
of DAMPs by ferroptotic cancer cells, which has been
demonstrated in various tumor types. Nevertheless, there
is sparse research regarding the regulation of cytokines,
antigenicity, and the application of the prophylactic vacci-
nationmodel in the context of ferroptosis. Present research
regarding cytokines and the prophylactic vaccinationmod-
els have concentrated primarily on a single tumor cell line,
and the conclusions derived from one tumor type may not
be readily applicable to others due to inherent tumor het-
erogeneity [89, 90]. As such, the current evidence base
is inadequate to definitively classify ferroptosis as ICD.
Furthermore, there is a lack of direct evidence regard-
ing the modulation of antigenicity by ferroptosis. A recent
research using the prophylactic vaccination model has
even denied the classification of ferroptosis as ICD [64].
Thus, further investigation is necessary to explore cytokine
release, antigenicitymodulation, and the prophylactic vac-
cination model to obtain more comprehensive evidence
and strengthen the case for considering ferroptosis as a
form of ICD.

2.1.2 Contradictory evidence

A recent study by Wiernicki et al. [64] indicated that fer-
roptosis might not be a form of ICD despite the release
of DAMPs and cytokines by ferroptotic cancer cells. The
study found that ferroptotic cancer cells were not immuno-
genic in a prophylactic vaccination model, regardless of
the stage of ferroptosis. Notably, when these ferroptotic
cancer cells were added to a prophylactic vaccination com-
posed of intrinsically immunogenic apoptotic cells, they
significantly diminished the immunogenic potential of the
apoptotic cells. The study also showed that early ferrop-
totic cancer cells not only failed to promote thematuration
of DCs but also inhibited their activity, cytokine release
and ability to present antigens. Furthermore, gene expres-
sion related to the adaptive immune response in DCs was
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significantly suppressed after phagocytosis of ferroptotic
cancer cells [64]. These results contradict the conclusions
drawn by Efimova et al. [59]. One possible reason for this
discrepancy could be the study by Efimova et al. [59],
which considered MCA205 cells treated with RSL3 for a
short period as early ferroptotic cancer cells. However,
short-term treatment with ferroptosis inducers does not
lead to complete cell death induction and still leaves many
living cells (as confirmed by Efimova et al. [59]). The pres-
ence of living cells in the vaccinemixture can lead to tumor
growth at the vaccination site, rendering the data mean-
ingless and difficult to interpret. In contrast, the study
by Wiernicki et al. [64] used an inducible model of fer-
roptosis via doxycycline-inducible knockdown of GPX4,
which allowed for synchronous and complete cell death
induction, eliminating the impact of this bias.
There are several potential reasons why ferroptotic cells

release DAMPs and cytokines but are still not immuno-
genic. One possible explanation is that the immunogenic
effects of DAMPs and cytokines may be counteracted by
producing immunosuppressive substances during ferrop-
tosis. For example, cyclooxygenase 2 (COX-2) expression
increases during ferroptosis [5], leading to the synthesis of
prostaglandin E2 (PGE2) [91, 92], which has an immuno-
suppressive effect [93–96]. PGE2 has been observed to
suppress the expression of anti-tumor T-helper (Th) 1
cytokines while concurrently upregulating the expres-
sion of pro-tumor Th2 cytokines in immune cells [97,
98]. Furthermore, PGE2 enhances the functionality of
immune suppressive cells such as Tregs and MDSCs [97].
In addition to these effects, PGE2 also increases the
expression of programmed cell death protein 1 (PD-1)
in TAMs and MDSCs, thereby exerting immunosuppres-
sive effects [99]. COX-2 can also upregulate the synthesis
of prostaglandin D2 (PGD2) [100]. PGD2 can potentially
impair humanNK cells’ function by activating the receptor
for D-series prostaglandins (DP) [101]. Moreover, the inter-
action between PGD2 and the chemoattractant receptor
expressed on Th2 cells (CRTH2) has been associated with
immune suppression and establishing a tumor-friendly
microenvironment [102]. Additionally, Wiernicki et al.
[64] found that ferroptotic cancer cells underwent lipid
peroxidation before releasing DAMPs, resulting in the
production of phospholipid peroxide [103, 104]. Oxidized
phospholipids have been demonstrated to impede the
activation of DCs and diminish their responsiveness to
TLR activation ligands, as well as their ability to stimu-
late T cells [104]. Mechanistically, oxidized phospholipids
impede the differentiation and maturation of DCs, result-
ing in reduced expression of the hallmark differentiation
factor CD1a. Moreover, oxidized phospholipids can inhibit
the phosphorylation of histone H3 and the recruitment
of nuclear factor-κB (NF-κB) to the interleukin (IL)-12

subunit p40 (IL-12p40) promoter, leading to decreased
production of IL-12 by DCs and a weakened capacity
to stimulate T cells [103]. Another potential explanation
is that the CRTs of ferroptotic cells are exposed shortly
before cell membrane rupture, which differs from other
forms of cell death and may not promote their uptake
by DCs, thereby reducing their immunogenicity [64].
Furthermore, Wiernicki et al. [64] observed that while
bone marrow-derived DCs exposed to ferroptotic can-
cer cells showed signs of increased maturation [indicated
by increased expression of CD86, CD40, major histo-
compatibility complex (MHC) II], their ability to induce
proliferation of antigen-specific T cells was reduced. The
authors hypothesized that the antigen processing and
presentation process in DCs may be inhibited [64]. Our
understanding of how ferroptosis affects the antigenic-
ity of cancer cells and the resulting impact on the
immunogenicity of ferroptotic cancer cells is still currently
limited.
To sum up, the role of ferroptotic cancer cells in anti-

tumor immunity will affect the application of ferroptosis-
targeted therapy in cancer. It remains controversial
whether ferroptotic cancer cells can serve as ICD induc-
ers (Figure 2). Further studies are needed to clarify the
immunogenicity of ferroptotic cancer cells. It is worth not-
ing that Chen et al. [105] recently developed a novel high-
performance photothermal nanoparticle, triphenylamine
with methoxy group (TPA)- naphthalene diimide-fused
2-(1,3-dithiol-2-ylidene) acetonitrile (NDTA) nanoparticle,
which, when combined with the ferroptosis inducer RSL3,
was found to effectively enhance the immunogenicity of
ferroptosis. The authors confirmed the synergistic effect
of this approach in animal experiments [105]. Therefore,
exploring methods that can enhance the immunogenicity
of ferroptosis is also one of the future directions to improve
the efficacy of ferroptosis-targeted therapy in cancer.

2.2 The impact of ferroptotic cancer
cells on anti-tumor immunity: facilitation
or inhibition?

2.2.1 Facilitating effects

In addition to DAMPs and cytokines released by fer-
roptotic cancer cells, previous studies have shown that
oxidized phosphatidylserine on the outer layer of the
cell membrane in apoptotic cells can promote phago-
cytosis by macrophages [106, 107]. Is there a similar
effect in ferroptotic cancer cells? While the eversion
of phosphatidylserine in the cell membrane does not
occur in ferroptotic cells, a recent research has identified
the oxidation products of phosphatidylethanolamine,
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F IGURE 2 Whether ferroptosis qualifies as ICD remains debatable. Ferroptotic cancer cells can release DAMPs and cytokines, such as
HMGB1, ATP, and DCN, and they can also express CRT on the cell surface, which conforms to two of the three hallmarks of ICD. However,
the prophylactic vaccination model has shown that ferroptotic cancer cells are non-immunogenic. They can also synthesize
immunosuppressive substances, such as PGE2 and phospholipid peroxides. Furthermore, the late expression of CRT on the surface of
ferroptotic cancer cells may reduce its immune-promoting effect. Additionally, the regulation of ferroptosis on antigenicity, one of the
hallmarks of ICD, remains unclear. Therefore, whether ferroptosis belongs to ICD is still a controversial topic. Abbreviations: ATP: adenosine
triphosphate; CRT: calcium reticulum protein; DAMPs: damage-associated molecular patterns; DCN: proteoglycan decorin; HMGB1: high
mobility group protein 1; ICD: immunogenic cell death; PGE2: prostaglandin E2.

particularly 1-steaoryl-2-15-HpETE-sn-glycero-3-
phosphatidylethanolamine (SAPE-OOH), as an “eat-me”
signal delivered by ferroptotic cancer cells (HL60 and 4T1
cells) to macrophages [108]. Macrophages can recognize
this signal through TLR2, mediating the phagocytosis of
ferroptotic cancer cells. Besides, there may be unidentified
compensatory mechanisms that mediate the recognition
of SAPE-OOH when TLR2 is unavailable [108]. The
authors of the study suggested that macrophages can rec-
ognize the “eat-me” signal of ferroptotic cancer cells and
mediate their phagocytosis. However, further research is
necessary to determine whether other immune cells, such
as DCs, can recognize ferroptotic cancer cells through a
similar mechanism and exert anti-tumor immunity.
Furthermore, a study has shown that ferroptotic cancer

cells may activate anti-tumor NK cells [109]. Specifically,
the study found that the NK cell + Ferumoxytol (ferropto-
sis inducer) treatment group exhibited significant upregu-
lation of IFN-γ, an indicator of NK cell activity. Addition-
ally, the expression of CD107a, a marker of NK cell degran-
ulation, was also significantly increased. In addition, the
study also observed an increase in the expression of UL16-
binding protein (ULBP) family members (ULBP1, ULBP2,
and ULBP3) on the surface of cancer cells (PC-3 cells)
after ferumoxytol-induced ferroptosis. ULBP is a stress-
induciblemolecule that can be recognized by natural killer
group 2D (NKG2D) expressed on the membrane of NK
cells, leading to NK cells’ activation and anti-tumor effects.

Moreover, several studies have indirectly suggested that
ferroptotic cancer cells might promote anti-tumor immu-
nity. For instance, Zhang et al. [110] found that DHA
can induce ferroptosis in cancer cells (Panc02 and Panc1
cells). They also observed that DHA reduced the frequency
of M2-type TAMs and MDSCs in tumors while increas-
ing the frequencies of CD4+ T cells, CD8+ T cells, NK
cells, and natural killer T cells. In contrast, it did not
affect immune cells in lymph nodes [110]. However, this
study did not explore the mechanism underlying the phe-
nomenon, nor did it rule out the influence of the drug
itself on immune cells through further experiments. The
study only examined the effect of DHA on the frequency
of immune cells, without exploring whether it affected
their function. Another study on DHA demonstrated
that Zn-pyrophosphate (ZnP)@DHA/pyropheophorbide-
iron (PYRO-Fe) core-shell nanoparticles could induce
ferroptosis and the release of DAMPs inCT26 cells, thereby
promoting the maturation of co-cultured bone marrow
DCs [75]. Its combination with programmed cell death lig-
and 1 (PD-L1) blockade significantly delayed tumor growth
in mice bearing CT26 and MC38 tumors. However, this
effect was substantially reduced in immunodeficient mice,
affirming the role of ferroptosis in activating anti-tumor
immunity [75]. Nonetheless, the researchers also noted
that ZnP@DHA/Pyro-Fe enhanced tumor cells’ apopto-
sis. Therefore, the activation of anti-tumor immunity in
their study cannot be solely attributed to ferroptosis. In
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1078 ZHENG et al.

fact, DHA has been reported to induce various forms of
cell death, including apoptosis [111–114], pyroptosis [115,
116], and autophagy [111, 117]. Consequently, the impact of
DHA on cell death and the subsequent anti-tumor immu-
nity cannot be exclusively explained by ferroptosis alone,
and further research is required to elucidate its precise
mechanisms. Despite that, a recent study has reported
that increased immunogenicity in lung cancer cells treated
with DHA can be negated by ferroptosis inhibitors, sup-
porting the theory that DHA fosters anti-tumor immunity
via ferroptosis [79].
Furthermore, recent studies, particularly those focused

on nanoparticle-based approaches, have provided ample
evidence for the immunomodulatory effects of inducing
ferroptosis in cancer cells. For example, many studies
have demonstrated that ferroptotic cancer cells promote
immune cell infiltration or activation, thereby improv-
ing the immunosuppressive TME [48–58, 62, 79, 84, 85,
118–122]. Several studies have also shown that inducing
ferroptosis in cancer cells significantly enhances the effi-
cacy of immunotherapy [48–58]. Certain studies have even
reported that inducing ferroptosis in cancer cells can lead
to durable immune memory in vivo, directly eliminating
rechallenged cancer cells and preventing tumor formation
[56, 121]. Collectively, these studies provide substantial evi-
dence for the ability of ferroptotic cancer cells to promote
anti-tumor immunity.
Similar to the evidence presented in the section explor-

ing whether ferroptosis is a form of ICD, numerous studies
have provided substantial proof for the immunomod-
ulatory effects of ferroptotic cancer cells in fostering
anti-tumor immunity. Nonetheless, there are certain vital
aspects to consider. Certain drugs that trigger ferropto-
sis also have multiple anti-tumor mechanisms of action,
meaning the activation of the immune system they insti-
gate cannot be exclusively attributed to ferroptosis. For
instance, DHA can provoke various forms of cell death
[111–117, 123, 124]. Several studies involving nanoparticle-
basedmethodologies have discovered that certain particles
can trigger apoptosis in cancer cells [55, 57] in addition
to ferroptosis, and apoptosis is recognized as a form of
ICD [125]. Moreover, many studies have not meticulously
ruled out the direct effects of the employed drugs on
anti-tumor immunity. Some drugs may harbor immunos-
timulatory elements that can independently influence the
tumor immune response [54, 78]. Therefore, it is chal-
lenging to ascertain whether the observed alterations in
anti-tumor immunity are solely induced by ferroptotic can-
cer cells or influenced by additional factors like the drugs
employed. Also, numerous studies mainly concentrate on
gauging the drug efficacy instead of probing the molecular
mechanisms by which ferroptotic cancer cells manipu-
late anti-tumor immunity. They may note the immune

system activation as an observed event without probing
deeper into the underlying molecular pathways. Despite
these considerations, this body of evidence still supports
the notion that ferroptotic cancer cells activate anti-tumor
immunity.

2.2.2 Inhibitory effects

Some studies have also suggested that ferroptotic cancer
cells have an inhibitory effect on anti-tumor immunity.
For example, inducing ferroptosis in mice resulted in the
release of 8-hydroxyguanosine (8-OHG) [65]. Elevated 8-
OHG activated a transmembrane protein 173 (TMEM173,
also known as STING)-dependent DNA sensor path-
way, leading to macrophage infiltration and polarization
towards the M2 phenotype. This promoted Kras-driven
pancreatic tumorigenesis in mice [65]. Additionally, Dai
et al. [66] found that pancreatic cancer cells carrying
KrasG12D mutations released KrasG12D protein during
ferroptosis. Macrophages can uptake KrasG12D through
AGER, leading to their polarization towards an M2-like
pro-tumor phenotype via fatty acid oxidation mediated by
the AGER-signal transducer and activator of transcription
(STAT) 3 pathway. Further studies showed that KrasG12D-
ingestedmacrophages promoted pancreatic tumor growth,
and blocking KrasG12D release and uptake could inhibit
this effect [66]. However, this conclusion was drawn from
KRAS-mutated pancreatic ductal adenocarcinoma, and it
is still unclear whether a similar effect exists in other
tumors.
Moreover, considering the extensive roles of arachi-

donic acid (AA)metabolites in inflammation and immune
regulation [126], these metabolites may also participate
in the modulation of anti-tumor immunity by ferrop-
totic cancer cells. AA metabolites are primarily produced
through three enzymatic pathways: the COX pathway, the
lipoxygenase pathway, and the cytochrome P450 pathway.
COX predominantly generates prostaglandins and throm-
boxanes, lipoxygenase chiefly produces leukotrienes and
lipoxins, and cytochrome P450 yields hydroxyeicosate-
traenoic acid (HETE) [91, 126]. As previously mentioned,
ferroptotic cancer cells upregulate the expression of COX-2
[5], which may increase the synthesis of PGE2 down-
stream of COX-2 and exert an immunosuppressive effect.
Another metabolite of AA through the COX-2 pathway,
PGD2 [100], may also be synthesized in increased quan-
tities due to enhanced COX-2 expression [5]. PGD2 has
been found to potentially inhibit human NK cell function
by signaling through the receptor for DP [101]. Addi-
tionally, the PGD2-CRTH2 axis has been implicated in
immune suppression and the establishment of a tumor-
supportive microenvironment [102]. Thromboxane A2
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ZHENG et al. 1079

(TXA2), another metabolite of AA through the COX
pathway [91, 126], can exert immunosuppressive effects,
thereby facilitating tumor growth as well [127]. Inhibitory
effects of TXA2 on CD8+ T cells and DCs have also
been noted in studies using melanoma and breast can-
cer allografts [128]. Aside from the derivatives of the COX
pathway, metabolites of the lipoxygenase and cytochrome
P450 pathways can also foster tumor growth [50, 129–131].
Both lipoxygenase and cytochrome P450 are important
regulators in the process of ferroptosis [11]. Leukotriene
B4, produced via the lipoxygenase pathway, can stimu-
late tumor growth by recruiting neutrophils and driving
pro-tumor inflammation [131]. Additionally, cells under-
going ferroptosis in response to inducible GPX4 depletion
can release other AA derivatives, such as HETE [132].
Among these, 20-HETE may promote pro-tumor inflam-
mation by facilitating the release of various inflammatory
factors [130]. Recent discoveries have also revealed that
20-HETE can facilitate the ubiquitination and degradation
of ACSL4, resulting in cancer cells’ resistance to ferrop-
tosis and immunotherapy [50]. Furthermore, 20-HETE
stimulated the immune checkpoint PD-L1 expression in
cancer-associated fibroblasts through the STAT pathway
and promoted the secretion of angiogenic factors like IL-6
and transforming growth factor β [129]. This action fos-
tered resistance to immunotherapy in non-small cell lung
cancer [129]. On the other hand, 12-HETE and 15-HETE
do not significantly affect DC maturation [133]. Besides,
the associated 15-hydroperoxyeicosaetetranoic acid (15-
HpETE-PE) can induce ferroptosis in immune cells [134].
However, it is crucial to note that the modulatory effects of
these aforementioned substances(e.g., PGD2, TXA2, etc.)
on anti-tumor immunity have not yet been directly demon-
strated in ferroptotic cancer cells. The association between
other AA metabolites and immune suppression in cancer
remains unclear.
Ferroptotic cancer cells can produce phospholipid per-

oxide, which has a potent immunosuppressive effect on
DCs [103, 104]. These phospholipids obstructed the dif-
ferentiation and maturation of DCs by lowering the
expression of the hallmark differentiation factor, CD1a.
Additionally, they inhibited the phosphorylation of his-
tone H3 and limited the recruitment of NF-κB to the
IL-12p40 promoter, which resulted in decreased IL-12 pro-
duction by DCs and a subsequent reduction in T cell
stimulation [103]. Additionally, ferroptotic MCA205 can-
cer cells led to the accumulation of lipid droplets in DCs
[64], which can inhibit the function of DCs. The possi-
ble mechanism underlying the inhibitory effect of lipid
droplets on DCs’ function is that the oxidative products
in lipid droplets interacted with HSP70, thereby pre-
venting the presentation of peptide-MHC-I complexes on
the surface of DCs [135, 136]. Furthermore, Liu et al.

[137] found that although immune cells were more abun-
dant in glioblastoma patients with high ferroptosis scores,
most of these cells were immunoregulatory cells, leading
to an immunosuppressive microenvironment in glioblas-
toma. Ferroptosis in glioblastoma promoted not only
TAM infiltration but also their M2 polarization. Inhibi-
tion of ferroptosis increased T cells’ activity and tended
to decrease the proportion of MDSCs [137]. However, the
study did not investigate the mechanism underlying this
phenomenon. Moreover, although HMGB1 released by
ferroptotic cancer cells can act as a DAMP to improve
its immunogenicity, it can also accelerate the generation
of tumor-promoting inflammation through NF-κB and
inflammasome pathways [138]. The release of HMGB1
from ferroptotic hepatocellular carcinoma (HCC) cells has
been shown to promote MDSC infiltration, thereby sup-
pressing anti-tumor immunity, although this effect has not
been observed in colorectal cancer [49].
In summary, the role of ferroptotic cancer cells in anti-

tumor immunity is multifaceted (Figure 3). While there
is substantial evidence bolstering their immunostimula-
tory effects, there is comparatively less evidence directly
illustrating their inhibitory influence on anti-tumor immu-
nity. The primary support for this inhibition mostly comes
from localized and mechanistic studies, with sparse com-
prehensive evidence demonstrating direct suppression of
anti-tumor immunity by ferroptotic cancer cells. It appears
that the overall influence of ferroptotic cancer cells on
anti-tumor immunity might be contingent on the spe-
cific tumor type and its surrounding microenvironment.
Further research is essential to more thoroughly under-
stand the complex relationship between ferroptosis and
anti-tumor immunity and discern the specific conditions
under which ferroptotic cancer cells either promote or
inhibit anti-tumor immunity. Gaining this knowledge will
be instrumental in leveraging the positive impacts andmit-
igating the negative repercussions of ferroptosis within the
context of future anti-tumor immune responses.

3 THE CROSSTALK BETWEEN
FERROPTOSIS AND ANTI-TUMOR
IMMUNITY IN IMMUNE CELLS

3.1 Immune cells activate anti-tumor
immunity by promoting the ferroptosis of
cancer cells: the possible synergistic effects
of pro-ferroptotic agents in combination
with immunotherapy

Previous studies have suggested that CD8+ T cells primar-
ily eliminate tumor cells through the perforin-granzyme
and Fas (also known as CD95)-Fas ligand pathways
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1080 ZHENG et al.

F IGURE 3 Ferroptotic cancer cells exhibit both promoting and suppressing effects on anti-tumor immunity. Ferroptotic cancer cells
have both promoting and inhibiting effects on anti-tumor immunity. Ferroptotic cancer cells express SAPE-OOH on the surface, which can be
recognized by TLR2 of macrophages as an “eat-me” signal, promoting the phagocytosis and clearance of ferroptotic cancer cells by
macrophages. In addition, the expression of ULBP on the surface of ferroptotic cancer cells is increased, which can be recognized by NKG2D
in NK cells, promoting the release of IFN-γ and the expression of CD107a (a marker of NK cell degranulation) by NK cells. Furthermore,
ferroptotic cancer cells can release DAMPs and cytokines to promote the maturation of DCs. However, ferroptotic cancer cells can also release
immunosuppressive substances, such as 8-OHG and KrasG12D, to differentiate macrophages towards the tumor-promoting M2 type.
Additionally, they can increase the synthesis of PGE2 to inhibit anti-tumor immunity. Moreover, they can increase lipid droplet accumulation
in DCs and inhibit their function. Therefore, the role of ferroptosis in cancer cells in anti-tumor immunity is complex. Abbreviations: 8-OHG:
8-hydroxyguanosine; CAF: cancer-associated fibroblasts; DAMPs: damage-associated molecular patterns; DC: dendritic cell; ECM:
extracellular matrix; IFN: interferon; NKG2D: natural killer group 2D; NK cell: Nature killer cell; PGE2: prostaglandin E2; SAPE-OOH:
1-steaoryl-2-15-HpETE-sn-glycero-3-phosphatidylethanolamine; TAM: tumor-associated macrophage; TLR2: toll-like receptor; TME: tumor
microenvironment; ULBP: UL16-binding protein.
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ZHENG et al. 1081

F IGURE 4 CD8+ T cells kill cancer cells through ferroptosis. CD8+ T cells activated by immunotherapy can release IFN-γ, sensitizing
cancer cells to ferroptosis. After IFN-γ binds to IFNR on the surface of cancer cells, it reduces the expression of SLC7A11 through the
JAK-STAT pathway, inhibiting the system Xc-, reducing the uptake of cystine, and ultimately affecting the function of GPX4, promoting
cancer cells’ ferroptosis. Moreover, IFN-γ can increase the expression of ACSL4 through the IFN-γ/STAT1/IRF1 pathway, thus increasing the
synthesis of PUFA-PL with AA as a substrate, and ultimately promoting cancer cells’ ferroptosis. Abbreviations: AA: arachidonic acid;
ACSL4: acyl-CoA synthetase long-chain family member 4; GPX4: glutathione peroxidase 4; GSH: glutathione; ICB: immune checkpoint
inhibitor; IFN: interferon; IFNR: interferon receptor; IRF: interferon regulatory factor; JAK: Janus kinase; PD-1: programmed cell death
protein 1; PD-L1: programmed cell death ligand 1; p-STAT: phosphorylated Signal Transducer and Activator of Transcription; PUFA-PL:
phospholipid containing polyunsaturated fatty acid chains; STAT: signal transducer and activator of transcription; System Xc-:
cystine-glutamate antiporter comprising SLC7A11 and SLC3A2 subunits; TME: tumor microenvironment.

[139–142]. However, recent studies indicated that CD8+ T
cells can kill tumor cells by inducing ferroptosis (Figure 4).
Wang et al. [46] demonstrated that CD8+ T cells activated
by immunotherapy could sensitize tumor cells (ID8, B16,
HT1080 cells) to ferroptosis by secreting IFN-γ, thereby
exerting an anti-tumor effect. Mechanistically, IFN-γ can
activate the Janus kinase (JAK)-STAT1 pathway in tumor
cells, enhancing the binding of STAT1 to the transcrip-

tion initiation site of SLC7A11, thereby down-regulating
the expression of system Xc- and sensitizing cancer cells to
ferroptosis induction or cystine deprivation [46]. The study
reveals ferroptosis of tumor cells as a previously unrec-
ognized CD8+ T cell-mediated anti-tumor mechanism in
vivo. Cystine limitationmay be a potential endogenous fac-
tor in the TME that triggers ferroptosis in tumor cells. Sim-
ilarly, Liao et al. [47] found that IFN-γ can cooperate with
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1082 ZHENG et al.

AA to promote ferroptosis in melanoma cells. This effect
depends on the expression of ACSL4 in tumor cells rather
than the system Xc-. Mechanistically, IFN-γ promotes
ACSL4 expression through the IFNγ/STAT1/interferon
regulatory factor 1 (IRF1) signaling axis, and then phospho-
lipids associated with AA reprogramming sensitize cells
to ferroptosis. The loss of ACSL4 in tumors can weaken
the anti-tumor T-cell response. Combining AA and an ICI
can synergistically inhibit tumor (Lewis lung carcinoma,
MC38 and Yumm5.2 tumors) growth through IFN-γ [47].
The study reveals another mechanism by which immune
cells play an anti-tumor role by promoting the ferroptosis
of tumor cells. However, aside frompromoting tumor cells’
ferroptosis through the above two mechanisms, IFN-γ can
also up-regulate the expression of PD-L1 on the surface
of tumor cells, thereby exerting an immunosuppressive
effect and promoting tumor growth [143, 144]. In addition,
Kim et al. [109] found that NK cell-treated prostate cancer
cells exhibited similar levels of ferroptosis as in ferumoxy-
tol treatment, suggesting that NK cells may also induce
ferroptosis in cancer cells.
Considering these aspects alone, ferroptosis-targeted

therapy can enhance the anti-tumor immunity of immune
cells. The combination of ferroptosis-inducing therapy
and immunotherapy may exhibit synergistic effects and
represent a potential treatment strategy.

3.2 The sensitivity of immune cells in
TME to ferroptosis: the latent effects of
ferroptosis inducers on the immune cell
population

When using ferroptosis-targeted therapy to treat tumors
as it may be effective against drug resistance [20, 145],
the effect of ferroptosis inducers on immune cells in TME
cannot be ignored. It is crucial to consider the poten-
tial adverse effects of ferroptosis inducers on immune
cell populations. This impact on anti-tumor immunity
may directly influence the therapeutic effect of ferroptosis-
targeted therapy on tumors and its potential combination
with immunotherapy. Additionally, the TME itself has fac-
tors that promote ferroptosis, and its impact on immune
cells also needs to be considered. Therefore, exploring the
sensitivity of immune cells in the TME to ferroptosis is
crucial (Figure 5).

3.2.1 T cells

CD8+ T cells and conventional CD4+ T cells are more sen-
sitive to GPX4 inhibitors than B16 and MC38 cancer cells.
FSP1 or GPX4 overexpression lessened CD8+ T cells’ fer-

roptosis sensitivity without affecting anti-tumor function,
whereas ACSL4 inhibition reduced ferroptosis sensitivity
and impairs their function. [68]. Moreover, inhibition of
system Xc- or deprivation of cysteine in vivo did not
affect T cells in MC38 tumor-bearing mice [146]. There-
fore, inducing ferroptosis with adoptive reinfusion of T
cells after ferroptosis inhibition treatment or using system
Xc- inhibitors to induce ferroptosis in tumor cells may be
a desirable way for tumor therapy.
Furthermore, CD36 also plays a crucial role in pro-

moting the ferroptosis of T cells in the TME. CD36 is a
scavenger receptor that acts as a transporter of free fatty
acids and oxidized lipids [147–149]. It has been implicated
in various processes such as angiogenesis, inflamma-
tory responses, atherosclerotic thrombotic disease, and
metabolic disorders [150]. Ma et al. [151] discovered that
CD36 onCD8+ T cells inmelanoma andmultiplemyeloma
can uptake AA to promote lipid peroxidation and ferropto-
sis in the lipid-rich TME, thus impairing their anti-tumor
function. Additionally, Xu et al. [152] found that in B16 and
MC38 tumors, CD36 on CD8+ T lymphocytes can uptake
oxidized low-density lipoprotein (ox-LDL), enhancing the
lipid peroxidation level and the phosphorylation of p38,
leading to their dysfunction. Overexpression of GPX4 can
restore their anti-tumor function [152]. Incidentally, it
is worth mentioning that CD36 expression of Treg cells
in TME promotes their survival and immunosuppressive
function [153]. These studies suggested that targetingCD36
may be a feasible strategy to improve anti-tumor immunity.
CD8+ T cells can be classified into Tc1 (cytotoxic T lym-

phocyte subset 1), Tc2, Tc9, Tc17 and Tc22 subsets [154].
A previous study demonstrated that IL-9-secreting CD8+
Tc9 cells, which were differentiated ex vivo and then rein-
troduced into the body, exhibited better persistence and
anti-tumor efficacy than Tc1 cells when used for adoptive
cell therapy [155]. Tc9 cells have greater resistance to ROS-
rich tumor tissue-induced ferroptosis due to their secretion
of IL-9, which can activate the STAT3 signaling pathway,
upregulating fatty acid oxidation so that Tc9 cells have
lower fatty acid content [156]. The study suggested that tar-
geting fatty acid oxidation in T cells may be one strategy to
improve their resistance to ferroptosis and enhance their
anti-tumor ability.
Treg cells are a subset of CD4+ T cells that can suppress

anti-tumor immunity [35, 157, 158]. Tumor-derived Treg
cells showed fewer lipid peroxides than tumor-infiltrating
CD8+ T cells [68]. Gpx4 is necessary for preventing exces-
sive lipid peroxidation and ferroptosis in activated Treg
cells. However, ACSL4 is not essential for inducing ferrop-
tosis inGpx4-deficient Treg cells, and systemXc- inhibitors
rarely impair the viability of Treg cells [159]. This study sug-
gested that targeting GPX4 to induce ferroptosis in Treg
cells may be a strategy to enhance anti-tumor immunity.
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ZHENG et al. 1083

F IGURE 5 The sensitivity of immune cells in TME to ferroptosis is different. When using ferroptosis inducers to kill tumor cells, it
inevitably affects immune cells in the TME. The TME contains many different types of immune cells that perform different functions in
anti-tumor immunity. The sensitivity of these immune cells to ferroptosis varies, as detailed in the figure. Abbreviations: ASAH2: neutral
ceramidase N-acylsphingosine amidohydrolase; DC: dendritic cell; GPX4: glutathione peroxidase 4; MDSC: MDSCs: myeloid-derived
suppressor cell; NK cell: Nature killer cell; Nrf2: Nuclear factor erythroid 2-related factor 2; PMN-MDSC: polymorphonuclear MDSC; PPARG:
proliferator-activated receptor gamma; RUNX1: runt-related transcription factor 1; Tc9 cell: cytotoxic T lymphocyte subset9; TAM:
tumor-associated macrophages; TME: tumor microenvironment; XBP1: X-box-binding protein-1.

However, since anti-tumor CD8+ T cells are also highly
sensitive to GPX4 inhibitors, the pros and cons of this
approach need to be weighed. Additionally, reducing the
impact of GPX4 inhibitors on CD8+ T cells before applying
this strategy (such as CD8+ T cells overexpressing FSP1 in
vitro, adoptive reinfusion in vivo, and then combined with
GPX4 inhibitory treatment) may yield better results.

To sum up, CD8+ T cells generally exhibit a higher sen-
sitivity to ferroptosis than B16 and MC38 tumor cells, as
well as Treg cells. As a result, ferroptosis-inducing ther-
apies aimed at eradicating tumors might inadvertently
impact CD8+ T cells’ survival and functionality, poten-
tially encouraging tumor growth. The sensitivity of CD8+
T cells varies with different ferroptosis inducers: they
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1084 ZHENG et al.

demonstrate high susceptibility to GPX4 inhibitors but tol-
erance towards system Xc- inhibition or cysteine depriva-
tion. Enhancing GPX4 or FSP1 expressions could increase
CD8+ T cells’ ferroptosis resistance, thereby restoring their
anti-tumor capacities. The surface marker CD36 amplifies
CD8+ T cells’ ferroptosis sensitivity via AA and ox-LDL
uptake. However, the Tc9 subset, via the IL-9-STAT3 path-
way, shows greater ferroptosis tolerance and superior
anti-tumor properties. Treg cells, like CD8+ T cells, are
highly sensitive to GPX4 inhibition but tolerate Xc-system
inhibition. This selective susceptibility provides a founda-
tion for specifically inducing tumor cell ferroptosis while
minimizing effects on CD8+ T cells.

3.2.2 TAMs

TAMs can be divided into anti-tumor M1 and tumor-
promoting immunosuppressive M2 phenotypes [160, 161].
In general, TAMs in the TME are predominantly of the
M2 phenotype [33, 162]. Previous studies have demon-
strated that iron overload induced the polarization of
macrophages toward the M1 phenotype [163, 164]. Consid-
ering the substantial promoting effect of iron in the occur-
rence of ferroptosis [11], it is plausible to suggest that fer-
roptosis is involved in this phenotypic transition. Kapralov
et al. [134] found that M1-type TAMs were more resistant
to ferroptosis than M2-type TAMs in Lewis lung carci-
noma, primarily owing to their higher levels of inducible
nitric oxide synthase (iNOS) and nitric oxide (NO)-free
radical, which plays a role in anti-ferroptosis. The recent
development of the nano-drug D/L-Arginine@Ruthenium
provides further support to the study by facilitating the
polarization of TAMs towards the M1 phenotype in Lewis
lung carcinoma. This effect is achieved through the
enhanced production of NO and ROS [165]. Similarly,
Hao et al. [166] found that Apolipoprotein C1 (APOC1)
is overexpressed in TAMs of HCC. In vitro, APOC1
suppression reversed TAMs from the M2 phenotype to
the M1 phenotype via the ferroptosis pathway. In vivo,
APOC1-/- mice demonstrated notably smaller tumors and
increased proportions of M1 macrophages [166]. Addition-
ally, there is evidence to suggest that ferroptosis-promoting
nanoparticles, such as iron oxide nanoparticles and Fe3O4-
SAS@PLT nanoparticles (constructed using sulfasalazine
[SAS]-loadedmesoporous magnetic nanoparticles [Fe3O4]
and platelet [PLT] membrane camouflage), zero-valent-
iron nanoparticle and cancer cell membrane-camouflaged
gold nanocage loading doxorubicin and l-buthionine sul-
foximine, can facilitate the polarization of M2-type TAMs
into the M1 phenotype [119, 167–169]. Moreover, the dele-
tion of SLC7A11 has been found to promote ferroptosis in
TAMs via the GPX4/ribonucleotide reductase regulatory

subunit M2 pathway, which prevents polarization towards
the M2 phenotype. As a result, the efficacy of PD-L1 inhi-
bition in HCCwas enhanced [170]. Consequently, M2-type
TAMs exhibit a higher sensitivity to ferroptosis than their
M1 counterparts. Thus, promoting ferroptosis could drive
TAM polarization towards the M1 phenotype, thereby
amplifying anti-tumor capabilities. Leveraging ferropto-
sis inducers to raise the M1/M2 ratio presents a potential
strategy for bolstering anti-tumor immunity.

3.2.3 MDSCs

MDSCs are an important immunosuppressive cell pop-
ulation in the TME [34, 171]. Tumor-infiltrating MDSCs
exhibit resistance to ferroptosis-induced cell death, pri-
marily due to the elevated expression of system Xc- and
the neutral ceramidase N-acylsphingosine amidohydro-
lase (ASAH2). Inhibition of ASAH2 can reverse this resis-
tance and suppress tumor growth in 4T1, CT26 and AB1
tumors [71]. Recent research has highlighted Runx1 (runt-
related transcription factor 1)’s part in managing MDSC
ferroptosis. Restraining Runx1 may boost polarized cells’
death and MDSCs’ numbers by triggering the ferroptosis
pathway [172]. Additionally, Kim et al. [67] recently dis-
covered that polymorphonuclear MDSCs (PMN-MDSCs)
in the TME are highly sensitive to ferroptosis and spon-
taneously undergo ferroptosis. However, this does not
enhance anti-tumor immunity by reducing the number
of PMN-MDSCs. Instead, it confers immunosuppressive
activity on PMN-MDSCs [67] (see section 2.3. Ferroptotic
immune cells suppress anti-tumor immunity).
In summary, MDSCs typically demonstrate resistance

to ferroptosis, a phenomenon associated with the upreg-
ulation of the system Xc- and ASAH2 expression. The
Runx1 gene might contribute to the ferroptosis and polar-
ization of MDSCs. Intriguingly, despite MDSCs’ generally
defensive response to ferroptosis, PMN-MDSCs display
sensitivity to this process, which paradoxically enhances
their immunosuppressive function.

3.2.4 DCs

DCs are professional antigen-presenting cells that play a
critical role in the activation of naïve T cells and sus-
taining T cell-dependent immunity [61, 173]. Han et al.
[174] demonstrated that DCs were sensitive to ferropto-
sis induced by the GPX4 inhibitor RSL3 but relatively
insensitive to the SLC7A11 inhibitor erastin. Peroxisome
proliferator-activated receptor gamma (PPARG) is a pos-
itive regulator of ferroptosis in DCs and a critical fac-
tor in preventing the maturation and activation of DCs
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during ferroptosis [174]. Therefore, combining the ferrop-
tosis inducer and the PPARG inhibitor may be a potential
therapeutic strategy. Alternatively, the use of SLC7A11
inhibitors can kill tumors while having less impact on
DCs, which is also a potentially feasible method [174].
Furthermore, evidence suggests that lipid peroxidation
byproducts in tumor-associated DCs can trigger the acti-
vation of the structural X-box-binding protein-1 (XBP1)
[175]. The resulting dysfunction in DCs can drive ovarian
cancer progression [175]. It also potentially suggested that
ferroptosis-targeted therapy may adversely affect DCs.
In a nutshell, DCs display sensitivity to GPX4 inhibitors

while demonstrating resistance to system Xc- inhibitors.
The generation of lipid peroxides during ferroptosis can
activate XBP1, subsequently impairing DCs functionality.
PPARG has a notable role in stimulating DCs ferrop-
tosis and concurrently inhibiting DCs maturation and
activation.

3.2.5 NK cells

NK cells play a crucial role in the body’s defense against
tumors [30]. Any malfunction of these cells can elevate
the risk of tumorigenesis and tumor growth [176]. In an
ovarian cancer model, Poznanski et al. [177] found that
oxidative stress in the TME inhibited glucose metabolism
in NK cells, negatively affecting their function. Interest-
ingly, while peripheral bloodNK cells underwent oxidative
damage and exhibited ferroptosis markers in the TME,
NK cells expanded using IL-21-expressing feeder cells
exhibited metabolic resilience. These cells utilized the IL-
21-STAT3 pathway to achieve a metabolic profile akin to
tumor cells, prioritizing serine and glutamine for glu-
tathione (GSH) production, offering protection against
oxidative damage [177]. Furthermore, a recent study found
that gastric cancer cells can induce ferroptosis in NK cells
and impair their function via L-kynurenine production
[178]. Yet, elevated GPX4 expression reestablished the anti-
tumor prowess of NK cells [178]. These findings suggest
that ferroptosis might play a crucial role in the dysfunction
of NK cells within the TME.

3.3 Ferroptotic immune cells suppress
anti-tumor immunity

3.3.1 Ferroptosis kills immune cells that are
important for anti-cancer immunity

As previouslymentioned, pro-ferroptosis therapymay lead
to the death of immune cells within the TME. The most
direct adverse impact of ferroptosis on anti-tumor immu-

nity includes the killing of anti-tumor immune cells and
subsequent loss of their functionality. Specifically, lipid
peroxidation and ferroptosis in tumor-infiltrating CD8+ T
cells can impair their proliferation and secretion of anti-
tumor cytokines, leading to their dysfunction [151, 152].
Tc1 cells are more sensitive to ferroptosis compared to
Tc9 cells, resulting in weaker anti-tumor activity in B16
melanoma [156]. Similarly, inhibiting the anti-ferroptotic
capacity of Tc9 cells can shorten their lifespan and weaken
their anti-tumor capabilities [156].

3.3.2 Ferroptotic immune cells lose their
activity

Generally, cell death has a direct impact on immune cells,
leading to a decrease in both their quantity and function-
ality. Nevertheless, sometimes, the effects of cell death on
immune cell function can vary depending on the specific
circumstances. For example, Collins et al. [179] found that
the necroptosis of DCs abnormally enhanced their ability
to activate γδT cells. Conversely, inhibiting necroptosis of
DCs can decrease their ability to activate γδT cells. Regard-
ing ferroptosis, no such abnormal phenomenon has been
observed in anti-tumor immune cells. Ferroptosis impairs
DCs’ ability to secrete cytokines, expressMHC-II, and acti-
vate CD8+ T cells. Ferroptotic DCs lost their anti-tumor
activity against KPC cells, as verified in a prophylactic
vaccination model [174]. Moreover, apart from the func-
tional loss resulting from direct cellular killing, byproducts
associated with ferroptosis may also impact cellular func-
tionality. For instance, the byproducts of lipid peroxidation
in DCs triggered the activation of the XBP1, leading to DC
dysfunction [175].

3.3.3 Ferroptotic immune cells gain
immunosuppressive activity

Kim et al. [67] found that ferroptotic PMN-MDSCs have
strong immunosuppressive activity in several cancer types.
Mechanistically, this can be attributed to two factors. The
first factor is the notable upregulation of the PGE2 gene
synthesis observed within ferroptotic PMN-MDSCs. Inhi-
bition of ferroptosis led to a significant reduction of PGE2
released by PMN-MDSCs while inhibiting PGE2 synthesis
also partially suppressed their immunosuppressive activ-
ity. Secondly, oxidized phospholipids produced during
ferroptosis of PMN-MDSCs can directly inhibit T cells. For
instance, oxidized phosphatidylethanolamine and phos-
phatidylcholine can cause a significant decrease in T cells’
proliferation in mice [67]. Furthermore, oxidized phos-
phatidylethanolamine can also lead to a significant decline
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in human T cells’ proliferation [67]. However, it remains
unclear whether other types of immune cells undergo-
ing ferroptosis would acquire similar immunosuppressive
capabilities.
Overall, the relationship between immune cells and

ferroptosis in anti-tumor immunity is complex. While
immune cells can promote anti-tumor immunity by induc-
ing ferroptosis of cancer cells, different immune cells in
the TME have varying sensitivities to ferroptosis. Fur-
thermore, several immune cells may actually inhibit
anti-tumor immunity through different mechanisms after
ferroptosis. Therefore, ferroptosis-targeted therapy can be
a double-edged sword. While it can kill tumor cells and
certain immunosuppressive cells (such as M2-TAMs and
Tregs), it may also compromise the activity of anti-tumor
immune cells (such as CD8+ T cells, NK cells, and DCs)
and further promote the immunosuppressive effects of
some ferroptotic immune cells. It is crucial to carefully
consider the benefits anddrawbacks of ferroptosis-targeted
therapy in terms of its anti-tumor efficacy and make tar-
geted decisions based on the sensitivity of different cells to
different ferroptosis inducers.

4 CLINICAL TRIALS OF DRUGS ABLE
TO INDUCE FERROPTOSIS

Currently, there are no intervention trials specifically
targeting ferroptosis in humans [15]. Despite conduct-
ing thorough searches on databases such as PubMed,
Embase, and ClinicalTrials, we did not find any clinical
trials directly focused on using ferroptosis as a thera-
peutic approach for cancer. However, certain commonly
used drugs in clinical practice, including cisplatin [180],
sorafenib [6, 181], SAS [6], DHA [123] and statins [182], have
demonstrated the ability to induce ferroptosis in cancer
cells. Clinical trials associated with these drugs may pro-
vide a few insights. For example, combination therapy of
cisplatin with ICIs has shown greater effectiveness than
cisplatin monotherapy in various tumor types [183–187].
This suggests a possible synergy between ferroptosis induc-
tion and anti-tumor immunity. It seems that systematic
reviews and meta-analyses should be considered to obtain
more robust evidence comparing the efficacy of cisplatin
combined with immunotherapy to cisplatin alone or ICIs
alone. However, it is important to note that these drugs
are not specifically designed as ferroptosis inducers, and
their ability to induce ferroptosis may be relatively modest
[6]. Moreover, their anti-tumor mechanisms are multi-
faceted, and ferroptosis induction is just one aspect of their
overall effects. Therefore, the interaction between these
drugs and anti-tumor immunity cannot be solely attributed
to ferroptosis. As a result, the clinical data from these

non-specialized ferroptosis inducers have limited value in
providing comprehensive evidence for our review. Further
clinical trials directly targeting ferroptosis as a therapeu-
tic approach for cancer are necessary to generate more
valuable clinical evidence.

5 THE INTERPLAY BETWEEN
FERROPTOSIS AND ANTI-TUMOR
IMMUNITY IN DIFFERENT TYPES OF
CANCER

Tumor heterogeneity is a prevalent characteristic across
different types of tumors and even within different regions
of the same tumor [89, 90]. This heterogeneity can result
in diverse responses to therapeutic approaches, includ-
ing ferroptosis induction. Consequently, the interaction
between ferroptosis and anti-tumor immunity may vary
among different tumor types. Generalizing and catego-
rizing all tumor types based on the relationship between
ferroptosis and anti-tumor immunity may not be accurate.
Therefore, it is crucial to assess and evaluate potential dif-
ferences among different tumor types. Based on the details
described in the preceding text, we nowpresent a summary
of the relationship between ferroptosis and anti-tumor
immunity across different tumor types.

5.1 Melanoma

Two studies involving nanomedicines have observed that
ferroptotic melanoma cells released DAMPs [78, 84]. This
release promoted the phagocytosis and maturation of
bone marrow-derived DCs [84]. Furthermore, a synergis-
tic effect has been observed between ferroptoticmelanoma
cells and ICIs, leading to an enhanced anti-tumor immune
response [78]. Ferroptotic melanoma cells have also been
found to modulate the immune phenotype of the TME,
possibly facilitating the exposure of tumor antigens [86].
These findings support ferroptosis as ICD and its ability to
enhance anti-tumor immunity in melanoma.
Within theTME,CD8+ T cells activated by immunother-

apy are found to increase melanoma cells’ sensitivity
to ferroptosis via IFN-γ production [46, 47]. However,
CD8+ T cells are also more prone to ferroptosis than
melanoma cells [68]. CD36 enhances the sensitivity of
tumor-infiltrating CD8+ T cells to ferroptosis and impairs
their anti-tumor capabilities [151, 153], whereas Treg cells
use GPX4 to resist ferroptosis and maintain immunosup-
pression [159]. Interestingly, Tc9 cells in melanoma are
more resistant to ferroptosis than Tc1 cells and exhibit
stronger anti-tumor abilities [155, 156]. Thus, inducing fer-
roptosis in melanoma can have mixed effects on the TME.
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5.2 Breast cancer

Similarly, several studies have observed that ferroptotic
breast cancer cells can release DAMPs [77, 82, 85], leading
to the phenotypicmaturation ofDCs [82, 85]. Furthermore,
ferroptotic breast cancer cells enhance the infiltration
of anti-tumor immune cells [86], improve the immune
microenvironment phenotype [56, 58, 85, 118, 121], and
enhance the therapeutic efficacy of ICIs [56]. Ferroptosis
induction in breast cancer cells also activated persistent
anti-tumor immune memory [121]. Additionally, ferrop-
totic breast cancer cells expose SAPE-OOH as an “eat
me” signal, promoting their engulfment by macrophages
[108]. These findings suggest that ferroptosis in breast
cancer contributes to immune activation and enhances
anti-tumor immune responses.
In breast cancer, the induction of ferroptosis can pro-

mote the polarization of TAMs towards an anti-tumor M1
phenotype [168, 169]. However, MDSCs in breast cancer
display resistance to ferroptosis, which is attributed to the
expression of ASAH2 [71]. The impact of ferroptosis on
other immune cells within the breast cancer microenvi-
ronment requires further investigation to elucidate its role
comprehensively.

5.3 HCC

Ferroptotic HCC cells can also promote the release of
DAMPs, including HMGB1, ATP, and CRT [52, 80, 81, 83],
suggesting that ferroptosis enhances the immunogenicity
of HCC. Furthermore, ferroptotic HCC cells can induce
DC maturation [83], improve the immune microenviron-
ment by increasing the frequency of anti-tumor immune
cells [49, 51, 52], and augment the efficacy of ICIs in vivo
[49, 51, 52], which all indicate that ferroptosis activates
anti-tumor immunity in HCC. Additionally, stimulation
of ferroptosis has also been found to drive the M1 polar-
ization of TAMs [166, 170]. Furthermore, the role of Runx1
in inhibiting ferroptosis and promoting the polarization
of MDSCs has been identified, suggesting it as a potential
target for immunotherapy [172]. In summary, there’s evi-
dence of ferroptosis playing a role in bolstering anti-tumor
immunity within HCC. However, direct evidence on the
effects of ferroptosis on immune cells in the TME of HCC
remains scarce. Further research is needed to uncover
the impact of ferroptosis on various immune cells in the
TME, such as whether it adversely affects anti-tumor
CD8+ T cells or NK cells, thereby hampering anti-tumor
immunity. This will help clarify the potential of combin-
ing ferroptosis-targeted treatment with immunotherapy
in HCC.

5.4 Pancreatic cancer

In pancreatic cancer cells, ferroptosis has been found to
promote the release of HMGB1 and DCN, enhancing anti-
tumor immunity [63, 74]. However, in KRAS-mutated pan-
creatic cancer cells, two immunosuppressive substances,
8-OHG and KrasG12D, have been discovered [65, 66].
These substances can polarize macrophages towards a
pro-tumor M2 phenotype, stimulating tumorigenesis and
growth in pancreatic cancer [65, 66]. Nevertheless, it has
also been observed that ferroptosis in pancreatic can-
cer cells can improve the immune microenvironment by
increasing the frequency of anti-tumor immune cells, such
as CD8+ T cells and NK cells within the TME, and reduc-
ing the frequency of immunosuppressive cells like Tregs
and MDSCs [57, 110]. Additionally, the level of IFN-γ in
the TME also increased correspondingly, leading to an ele-
vated expression of PD-L1 on the surface of tumor cells [57].
This increase has been verified to enhance the efficacy of
ICIs in vivo [57]. Further research is needed to elucidate
the role of ferroptosis in anti-tumor immunity, specifi-
cally in KRAS-mutated pancreatic cancer cells. Currently,
there are no direct reports on the relationship between
immune cells in pancreatic cancer TME and ferroptosis.
It remains uncertain whether inducing ferroptosis affects
immune cells in pancreatic cancer, subsequently influ-
encing anti-tumor immunity. In summary, the role of
ferroptosis in anti-tumor immunity in pancreatic cancer is
ambiguous: it might either promote or inhibit the process,
possibly contingent upon specific conditions like the status
of the KRAS mutation [65, 66]. Given that pancreatic can-
cer inherently exhibits low immunogenicity [188], more
research is essential to elucidate the intricate relationship
between ferroptosis and anti-tumor immunity in this con-
text. Unraveling the effects of ferroptosis on immune cells
within the TME and understanding the conditions and
mechanisms whereby ferroptosis exerts varying impacts
on anti-tumor immunity could pave the way for enhancing
the efficacy of ICIs in treating pancreatic cancer.

5.5 Lung cancer

Ferroptosis in lung adenocarcinoma has been observed
to promote the release of DAMPs, which enhances the
immunogenicity of the tumor [76, 79]. This improved
immune cell infiltration or activation, ultimately enhanc-
ing the immune microenvironment [48, 50, 79, 119].
Furthermore, ferroptosis synergized with ICIs in the treat-
ment of lung adenocarcinoma [48, 50]. In ferroptotic large
cell lung cancer, activation of the immune system and
enhanced tumor killing have also been observed [119].
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In lung adenocarcinoma, CD8+ T cells activated by
immunotherapy kill tumors via ferroptosis and synergize
with AA [47]. A research also shows that M2 TAMs in
lung cancer were more sensitive to ferroptosis than M1
TAMs, and ferroptosis induction can effectively repolar-
ize TAMs towards the M1 phenotype [134]. These find-
ings are reinforced by studies using ferroptosis-promoting
nanomedicines in lung cancer [119, 165].

5.6 Colon cancer

Similar to other tumor types discussed in this section,
ferroptotic colon cancer cells can enhance the release of
HMGB1 and the exposure of CRT, thereby amplifying the
immunogenicity of colon cancer [54, 75]. These ferrop-
totic cells can also promote DCmaturation, improving the
immune microenvironment by increasing the frequency
of anti-tumor immune cells and increasing the release of
IFN-γ by T cells [54, 75]. Ferroptosis induction can also
notably enhance the efficacy of ICIs [75]. Interestingly, this
enhanced effect was absent in immunodeficient mice, sug-
gesting that the effect of ferroptosis on colon cancer partly
relies on the activation of anti-tumor immunity [75]. More-
over, a synergistic effect between immune-activated CD8+
T cells and AA has also been observed, promoting ferrop-
tosis in cancer cells and enhancing anti-tumor immune
function [47]. However, it should be noted that both CD8+
T cells and Tregs in colon cancer exhibited high sensitiv-
ity to GPX4 inhibition-induced ferroptosis [68, 159] while
tolerating inhibition of the Xc- system [146, 159]. Addi-
tionally, CD36 expression on CD8+ T cells has been found
to increase their sensitivity to ferroptosis, leading to the
inhibition of their function [153]. Furthermore, ASAH2
has been identified as a mediator of MDSC resistance to
ferroptosis. Inhibition of ASAH2 can restore MDSC sensi-
tivity to ferroptosis, thereby enhancing immune-mediated
tumor killing [71]. In summary, in colon cancer, there exists
a synergistic relationship between ferroptosis and anti-
tumor immunity. Notably, a recent research has revealed
that the knockdown of N-acetyltransferase 10 led to fer-
roptosis in colon cancer cells by decreasing the stability
and expression of FSP1mRNA, subsequently inhibiting the
initiation and progression of colon cancer [189]. Given fer-
roptosis’s proficiency in eliminating drug-resistant tumor
cells [18, 145], the combination of ferroptosis-targeted ther-
apy and immunotherapy may offer significant therapeutic
potential in colon cancer.
In other types of tumors, the existing research on the

interplay between ferroptosis and anti-tumor immunity
is relatively scattered, and therefore, it is not further
elaborated here. The conclusions drawn from a few spe-
cific tumor types still need to be validated in other types

of tumors to enhance their universality across different
cancers.

6 PERSPECTIVES

Immunotherapy and ferroptosis, new focal points in can-
cer treatment and regulatory cell death research, have
been the subject of widespread study since their incep-
tion. Since the discovery that ferroptosis induction is one of
themechanisms of anti-tumor immunity and can enhance
the efficacy of immunotherapy [46, 47], more and more
researchers have devoted themselves to the research of
combineduse of both for synergistic anti-cancer treatment.
Despite recent studies suggesting that ferroptosis may sup-
press anti-tumor immunity and attenuate its therapeutic
effect, enthusiasm and investigation in this domain persist
unabated. There is ongoing debate about the interaction
between ferroptosis and anti-tumor immunity. Our liter-
ature review reveals a relatively higher amount of direct
evidence supporting ferroptosis’ role in promoting anti-
tumor immunity. Despite potential publication bias and
study heterogeneity, the direct evidence suggesting ferrop-
tosis inhibits anti-tumor immunity is comparatively scant.
The evidence that does exist primarily focuses on local-
ized and mechanistic analysis. While this helps broaden
our understanding of molecular pathways and potential
treatment targets, it overlooks the influence of external
complex factors, thus providing a less accurate reflec-
tion of the true situation. One study notably asserts that
ferroptosis does not induce ICD using a prophylactic vac-
cination model [64]. This study by Wiernicki et al. [64],
using a doxycycline-inducible knockdown of GPX4, allow-
ing for synchronous and complete cell death induction,
contradicts Efimova et al.’s conclusions [59], asserting
that ferroptotic cancer cells are non-immunogenic. How-
ever, this conclusion drawn by Wiernicki et al. [64] may
not accurately mirror real-world scenarios of targeting
ferroptosis treatment, as ferroptosis stages in different can-
cer cells cannot be identical. Thus, in contrast, Efimova
et al. [59] research, which assesses the immunogenicity
of cancer cells after a period of treatment with ferrop-
tosis inducers, might be more representative of actual
clinical scenarios. Clinically, it’s improbable to achieve a
situation, as described by Wiernicki et al. [64], where all
cancer cells are synchronously and completely induced
into the same stage of ferroptosis using a specific exper-
imental method. Furthermore, relying on a single study
investigating one tumor type is insufficient due to tumor
heterogeneity. Hence, findings derived from one type of
tumor may not apply to others, warranting additional
studies for validation. Contrastingly, there is substantial
direct evidence suggesting that ferroptotic cancer cells can
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ZHENG et al. 1089

F IGURE 6 Possible combinations of ferroptosis-targeted therapy with adoptive cell therapy. Although inducing ferroptosis can
effectively kill tumor cells, it may also impair anti-tumor immunity and affect the efficacy of ferroptosis-targeted therapy. Therefore,
combining adoptive reinfusion of anti-tumor immune cells after anti-ferroptosis modification with ferroptosis inducers may play a more
effective therapeutic role. This approach not only maintains the killing effect of the ferroptosis inducer on tumors but also reduces damage to
anti-tumor immunity, thereby improving the curative effect of combined ferroptosis-targeted therapy and immunotherapy. Abbreviations:
TME: tumor microenvironment

enhance anti-tumor immunity, albeit without clear mech-
anistic explanations. This body of evidence encompasses
various tumor types, thereby enhancing the universality
and credibility of the hypothesis that ferroptosis in cancer
cells can promote anti-tumor immunity.
Despite potential shortcomings, such as the possibility

of drugs acting through non-ferroptotic pathways, incom-
plete elimination of drugs’ direct impact on anti-tumor
immunity, and a lack of key evidence, such as prophylactic
vaccination models, the preponderance of evidence leads
us to hypothesize that the overall effect of ferroptotic
cancer cells on anti-tumor immunity may vary with
tumor types and specific environments, but generally, its
promotion of anti-tumor effects outweighs the inhibitory
effects. However, there remains a necessity for further
research to gathermore evidence and elucidate underlying
mechanisms. This will help identify specific conditions

where ferroptosis promotes or inhibits anti-tumor immu-
nity and devise strategies to maximize its beneficial effects
while minimizing any negative consequences in the
future.
For immune cells, the direct impact of ferroptosis-

inducing drugs on them is an unavoidable problem. The
ferroptosis and related functional decline of anti-tumor
immune cells may play an important role in part of the
immune suppression mediated by ferroptosis. However,
as described in the main text, the key molecules and
signaling pathways that mediate the sensitivity of dif-
ferent immune cells to ferroptosis may vary, providing
possibilities for targeted treatment of ferroptosis and even
using ferroptosis to kill immune-suppressing cell groups.
Furthermore, combining anti-ferroptosis modification of
anti-tumor immune cells with ferroptosis treatment may
be a feasible method (Figure 6).
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In addition to the potential immune suppression effect
mediated by the direct impact of ferroptosis-inducing
drugs on immune cells, the special lipid metabolism of fer-
roptotic cancer cells, which undergoes lipid peroxidation
[11], may also play an important role in inhibiting anti-
tumor immunity. Its lipid peroxidation-related metabolic
products and activation of the COX-2 pathway [5] may pro-
duce a variety of immune regulatory mediators. However,
apart from PGE2, direct evidence linking other products to
ferroptosis-mediated anti-tumor immunity is still lacking,
although the regulation of tumor immunity by substances
such as PGD2 has been reported in some studies [101,
102]. Further research on this metabolic pathway and its
products may further clarify the immune suppression
mechanism mediated by ferroptosis. In addition, it has
been observed that KRAS mutant pancreatic cancer cells
can release special DAMP, including KRASG12D and
8-OHG, during ferroptosis, leading to the M2 polarization
of macrophages, which in turn promoted tumor growth
[65, 66], suggesting that the impact of ferroptosis on
anti-tumor immunity may depend on the specific context.
In tumors with different histological types and genotypes,
there may be unique pathways in which ferroptosis exerts
an immunosuppressive effect. However, whether there are
similar mechanisms in other types of tumors and different
genotypes remains unclear. Moreover, DAMPs, which
serve as a hallmark of ICD and are indicative of enhanced
anti-tumor immunity, can also promote immune suppres-
sion through specific mechanisms [49, 138], highlighting
that the release of DAMPs and other characteristics can
only serve as indirect evidence for identifying ICD, and
the gold standard is still the prophylactic vaccination
model.
As for whether ferroptotic cancer cells are immuno-

genic, it may also affect their treatment strategy. For
example, in immunotherapy, the immune phenotype of
TME needs to be considered. The TME can be categorized
into three distinct immunophenotypes based on the dis-
tribution of infiltrating immune cells. These include the
inflamed type, immune-altered type, and immune-desert
type [190–192]. In the immune-desert type, tumors lack
immune cell infiltration due to a lack of immunogenicity.
If ferroptosis is an ICD, inducing cancer cell ferroptosis
can promote immune cell infiltration and enhance the
efficacy of immunotherapy [193]. If ferroptosis does
not qualify as an ICD, this strategy lacks a theoretical
foundation. At present, although there is a lot of evidence
suggesting that ferroptotic cancer cells can release DAMP,
the most critical evidence of the prophylactic vaccination
model remains insufficient. Therefore, further relevant
research is still required.

7 CONCLUSIONS

In conclusion, the relationship between ferroptosis and
anti-tumor immunity is complex. While the overall effect
of ferroptotic cancer cells on anti-tumor immunity might
differ based on tumor types and specific environments, it’s
generally believed that its promotive effects on anti-tumor
activities overshadow the inhibitory ones. More research
is still needed to elucidate the immunogenicity of ferrop-
totic cancer cells, the effect of ferroptosis on immune cells,
and the interaction between ferroptotic cells and anti-
tumor immunity to further elucidate the regulatory role
of ferroptosis in anti-tumor immunity and its underlying
mechanisms. This will help to clarify the feasibility and
potential drawbacks of ferroptosis-targeted therapy in the
treatment of tumors and provide a translational basis for
selecting different combination strategies of ferroptosis-
targeted therapy and immunotherapy for different types of
tumors.
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