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Abstract
Background: Characterizing the unique immune microenvironment of each
tumor is of great importance for better predicting prognosis and guiding cancer
immunotherapy. However, the unique features of the immune microenviron-
ment of triple negative breast cancer (TNBC) compared with other subtypes
of breast cancer remain elusive. Therefore, we aimed to depict and compare
the immune landscape among TNBC, human epidermal growth factor receptor
2-positive (HER2+) breast cancer, and luminal-like breast cancer.
Methods: Single-cell RNA sequencing (scRNA-seq) was performed on CD45+

immune cells isolated from human normal breast tissues and primary breast
tumors of various subtypes. By analyzing the scRNA-seq data, immune cell clus-
ters were identified and their proportions as well as transcriptome features were
compared among TNBC, human HER2+ breast cancer, and luminal-like breast
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cancer. Pseudotime and cell-cell communication analyses were also conducted
to characterize the immune microenvironment.
Results: ScRNA-seq data of 117,958 immune cells were obtained and 31 immune
clusters were identified. A unique immunosuppressive microenvironment in
TNBC was decoded as compared to that in HER2+ or luminal-like breast can-
cer, which was characterized by higher proportions of regulatory T cells (Tregs)
and exhausted CD8+ T cells and accompanied by more abundant plasma cells.
Tregs and exhausted CD8+T cells in TNBC exhibited increased immunosuppres-
sion signature and dysfunctional scores. Pseudotime analyses showed that B cells
tended to differentiate to plasma cells in TNBC. Cell-cell communication analy-
ses indicated that these unique features are fostered by the diversified T cell-B cell
crosstalk in TNBC. Based on the T cell-B cell crosstalk, a prognostic signaturewas
established that could effectively predict the prognosis status for patients with
TNBC. Additionally, it was found that TNBC had a higher proportion of cyto-
toxic natural killer (NK) cells, whereas HER2+ or luminal-like breast cancer lost
this feature, suggesting that HER2+ or luminal-like breast cancer, but not TNBC,
may benefit from NK-based immunotherapy.
Conclusions: This study identified a distinct immune feature fostered by T cell-
B cell crosstalk in TNBC, which provides better prognostic information and
effective therapeutic targets for breast cancer.

KEYWORDS
breast cancer, prognostic signature, single-cell RNA sequencing, T cell-B cell crosstalk, triple-
negative breast cancer, tumor immune microenvironment

1 BACKGROUND

Immunotherapy is becoming a promising treatment
option in solid tumors [1]. As the antitumor effect of
immunotherapy is strongly associated with the tumor
immune microenvironment (TIME), dissecting the com-
plex and heterogeneous TIME is fundamental to finding
appropriate therapeutic targets and improving the clin-
ical efficacy of immunotherapies. Triple negative breast
cancer (TNBC) is the most aggressive tumor with the
worst prognosis compared to luminal-like breast cancer
and human epidermal growth factor receptor 2-positive
(HER2+) breast cancer [2–4]. Fortunately, immune check-
point blockade (ICB) has shown remarkable therapeutic
effects in TNBC, unlike in luminal-like or HER2+ breast
cancer [5–7]. For example, adding pembrolizumab, an anti-
programmed cell death 1 (PD-1) monoclonal antibody,
to neoadjuvant chemotherapy has yielded a satisfactory
pathological complete response rate of 64.8% in TNBC
[8]. However, there are still patients with TNBC who do
not respond well to immunotherapy, and the underly-
ing mechanisms are poorly understood [9]. Meanwhile,
robust biomarkers are lacking to help select patients who

can benefit from immunotherapy, and additional effec-
tive immunotherapies for luminal-like and HER2+ breast
cancer also need to be developed [10, 11]. To address the
challenges mentioned above, there is an urgent need for
a more comprehensive and in-depth understanding of the
unique TIME of each type of breast cancer, especially the
distinct features of TNBC in comparison with luminal-like
and HER2+ breast cancer.
Previous genomic and transcriptomic studies performed

on bulk tumor tissues have provided only averaged
information on cellular heterogeneity in the context of
TIME. Single-cell RNA sequencing (scRNA-seq) enables
transcriptomic analyses of individual cells, providing an
unprecedented circumstantial description of immune cell
diversity in tumors and allowing a deeper understanding
of the complexity of the TIME [12–14]. Several scRNA-seq
studies have been carried out in breast cancer, either focus-
ing on single cell populations in TNBC, such as tissue-
resident memory T cells [15] and B cells [16], describing
the general characteristics of immune cells [17], or depict-
ing the comprehensive tumor environment by sequencing
total cells isolated from breast tumors [18, 19]. However,
scRNA-seq studies focused on comparing the immune
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landscape between TNBC and other breast cancer molec-
ular subtypes are limited. The distinct TIME of TNBC has
not yet been explicitly reported.
In this study, scRNA-seq analyses were performed on

immune cells isolated from normal breast tissues and pri-
mary breast tumors with various molecular subtypes with
the aim of elucidating the distinct immune landscape
of TNBC compared to that of other molecular subtypes.
Cell-cell communications were analyzed to explore the
potential roles of immune cell interactions in shaping
TIME and to construct a T cell-B cell crosstalk prog-
nostic signature (TBCS) for TNBC. Altogether, this study
provided a single-cell resolution transcriptomic atlas of
infiltration immune cells and their communications in
TNBC compared to those in luminal-like and HER2+
breast cancer, which could lead to new insights for pre-
dicting the prognosis and guiding effective therapeutics for
patients with breast cancer.

2 MATERIALS ANDMETHODS

2.1 Tissue samples

In this study, tissue samples were obtained from patients
undergoing surgical resection. Patients meeting the fol-
lowing criteria were eligible: (1) female; (2) pathologically
confirmed invasive ductal breast cancer; (3) undergo breast
cancer mastectomy in Ruijin Hospital, Shanghai Jiao Tong
University School of Medicine. Patients receiving neoadju-
vant systemic treatment or having metastasis at diagnosis
were excluded. Patients were pathologically diagnosed
with breast cancer by core needle biopsy and then under-
went mastectomy. Samples were collected from freshly
surgical resections and isolated to single-cell suspensions
for scRNA-seq or flow cytometry.
Overall, 17 untreated primary breast cancer tissues and

four normal mammary tissues from patients diagnosed
with breast cancer from April 2020 to April 2021 were
subjected to scRNA-seq. Additional 55 tumor samples
and 48 normal samples were collected from May 2021 to
December 2021 to conduct flow cytometry. Based on the
status of the estrogen receptor (ER), progesterone recep-
tor (PR), andHER2 determined by immunohistochemistry
or fluorescence in situ hybridization on surgical resction
specimens, which were reported by pathologists in our
hospital, tumors were divided into three different molec-
ular subtypes: TNBC (ER− and PR− and HER2−), HER2+
breast cancer (HER2+), and luminal-like breast cancer
(ER+/PR+ and HER2−). The immunohistochemistry and
The detailed clinicopathological characteristics of each
patient are listed in Supplementary Table S1. This study
was approved by the Ethics Committee of Ruijin Hospi-

tal, Shanghai Jiao Tong University School of Medicine (ID:
2020-332). The tissue samples were obtained with written
informed consent from each patient.

2.2 Sample preparation

Tissue samples obtained from fresh surgical resections
were finely cut into small segments and then digested
in RPMI1640 medium (Gibco, Grand Island, NY, USA)
containing collagenase IV (1 mg/mL, Gibco) and DNase
I (20 μg/mL, Roche diagnostics, Indianapolis, IN, USA)
for 60 min on a rotor at 37◦C. Digested samples were
teased through a 70 μm cell strainer and resuspended in
red blood cell lysis buffer (Beyotime, Shanghai, China) to
remove red blood cells. Afterwards, the cells were stained
with antibodies (anti-human CD45-PE, 304008, 1:200,
Biolegend, San Diego, CA, USA) for 30 min at 4◦C. Liv-
ing immune cells (4′,6-diamidino-2-phenylindole-negative
[DAPI−], CD45+) were then sorted by fluorescence-
activated cell sorting (FACS) Aria SORP flow cytometer
(BD Biosciences, San Diego, CA, USA) and subjected to
scRNA-seq analysis.

2.3 Flow cytometry

For the validation of results derived from scRNA-seq analy-
ses, an additional 55 tumor samples and 48 normal samples
were collected to conduct flow cytometry, including 7
TNBC, 16 HER2+ breast cancer, and 32 luminal-like breast
cancer samples. Samples poorly stained were excluded in
further analyses. Single-cell suspensions were prepared
and incubated with Livedead (APC cy7, 65-0865-18) and
the following antibodies: anti-human Interferon (IFN)-
γ (Alexa Fluor 488, 53-7319-42, 1:200), and anti-human
CD19 (PEcy7, 25-0199-42, 1: 200) from eBioscience (San
Diego, CA, USA); anti-Human FOXP3 (Alexa Fluor 647,
560045, 1: 200) from BD Biosciences; and anti-human
CD45 (Alexa Fluor 700, 304024, 1: 200), anti-human CD27
(FITC, 124207, 1: 200), anti-human IgD (Brilliant Violet
510, 348219, 1: 200), anti-human CD38 (Brilliant Violet
421, 562444, 1: 200), anti-human CD3 (PE, 317307, 1: 200),
anti-human CD4 (Brilliant Violet 421, 344632, 1: 200),
anti-human CD8 (Brilliant Violet 510, 344732, 1: 200), anti-
human CD25 (FITC, 302603, 1: 200), anti-human CD56
(APC, 318309, 1: 200), and anti-human CD14 (PEcy7,
367112, 1: 200) from Biolegend. Stained cells were analyzed
on a Beckman Coulter Gallios machine (Lane Cove, NSW,
Australia).
B cells were identified as CD45+CD19+ cells; plasma

cells were identified as CD45+CD19+CD27+CD38+ cells;
cytotoxic CD8+ T cells were identified as CD45+
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CD3+CD8+ IFN-γ+ cells; and regulatory T cells (Tregs)
were identified as CD45+CD3+CD4+CD25+FOXP3+ cells.
For analysis of cytotoxic CD8+T cells, cells were stimulated
for 3 h at 37◦Cwith a cell activation cocktail (423303, Biole-
gend), followed by stainingwith fixation/permeabilization
buffer solution (BD Biosciences) according to the man-
ufacturer’s protocol. For Treg detection, cells were
stained with fixation/permeabilization buffer solution
(eBioscience) according to the manufacturer’s protocol.

2.4 Single-cell RNA library preparation,
sequencing, and data analysis

2.4.1 Single-cell RNA library preparation
and sequencing

Single-cell RNA libraries were prepared using the
10 × Chromium Single Cell platform using the Chromium
SingleCell 3’ Library, Gel Bead andMultiplexKit, andChip
Kit (10× Genomics, Pleasanton, CA, USA). The loaded
viable CD45+ cell numbers ranged from 8,000-16,500 with
a final viability of >80%, aiming for 2,000-10,000 single
cells per channel. Following the generation of single-cell
gel bead-in-emulsions, reverse transcription and ampli-
fication were performed. Then, amplified cDNAs were
purified and sheared. Purified libraries were sequenced
on the NovaSeq 6000 platform (Illumina, San Diego, CA,
USA) or the BGI MGISEQ-2000 platform (Shenzhen,
China) according to the manufacturer’s protocol.

2.4.2 Single-cell RNA-seq data
preprocessing and quality control

The Cell Ranger software pipeline (version 6.0.1) provided
by 10× Genomics [20] was applied to demultiplex cellu-
lar barcodes, map reads to the GRCh38 reference assembly
using the STAR aligner and produce the feature-barcode
unique molecular identifier (UMI) matrix. The 21 single-
cell RNA libraries were sequenced to average 352,830,238
(260,814,757-456,342,938) paired-end reads per cell with
80.0% (65.3%-98.6%) sequencing saturation (Supplemen-
tary Table S2). The UMI count matrix was processed using
the R package Seurat (version 4.0.4) [21]. As a quality
control (QC) step, genes detected in < 3 cells and cells
where < 200 genes had nonzero counts were filtered out.
To remove likely doublet captures, cells with total UMI
counts> 15,000 with< 200 or> 3,500 detected genes were
excluded. Following visual inspection of the distribution of
cells with mitochondrial genes, low-quality cells where >
20% of the counts belonged to mitochondrial genes were
also discarded. Additionally, the DoubletFinder (version

2.0.3) [22] R packagewas also applied for each library sepa-
rately to identify potential doublets. The expected doublet
rate was set to be 7.5%, and cells predicted to be doublets
were filtered. After QC, a total of 130,128 single cells from
21 libraries were retained for downstream analysis. The
stepwise QCmetrics used for individual samples are listed
in Supplementary Table S2. The resulting distribution of
gene counts, UMI counts, as well as mitochondrial gene
proportion are shown in Supplementary Figure S1A.

2.4.3 scRNA-seq normalization, batch effect
correction, dimensionality reduction, and
unsupervised clustering

After QC and filtering, the feature-barcode matrices of
each library were processed by the Seurat (version 4.0.4)
[21]. R package was used for normalization, highly vari-
able feature identification, scaling, and linear dimensional
reduction. Firstly, all 21 libraries were combined by the
Seurat merge function. Library size normalization was
performed in Seurat on the filtered matrix to obtain the
normalized count by NormalizeData. Features that exhib-
ited high cell-cell variation in the dataset were identified
by FindVariableFeatures, and a total of 3,000 highly vari-
able features were returned. Features were then centered
and scaled by ScaleData, and principal component anal-
ysis (PCA) was conducted by RunPCA. Next, to integrate
cells into a shared space from different datasets for unsu-
pervised clustering, the harmony algorithm [23] was used
for batch effect correction. A PCA matrix with 30 com-
ponents that used such informative genes was fed into
the RunHarmony function implemented in R package har-
mony (version 1.0). For visualization, the dimensionality
of each dataset was further reduced using the Uniform
Manifold Approximation and Projection (UMAP) by the
Seurat function RunUMAP. For unsupervised clustering,
a K-nearest neighbor based on the Euclidean distance in
the PCA space was first calculated and a shared nearest
neighbor graph was constructed by FindNeighbors. Then,
modularity optimization techniques by the Louvain algo-
rithm were applied by FindClusters to identify clusters of
cells.

2.4.4 scRNA-seq cell subset identification
and annotation

The first round of clustering (resolution = 0.3) identified
four major cell types, including T cells, B cells, natural
killer (NK) cells, and myeloid cells. To identify clusters
within each major cell type, a second round of clustering
on T, B, NK, and myeloid cells was performed separately.
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The procedure of the second round of clustering was the
same as that of the first round, starting from low-rank har-
mony output (30 components) on the highly variable genes
chosen as described above, with a resolution ranging from
0.1 to 0.9. The clustree (version 0.4.4) [24] R package was
used to visualize and evaluate the above clustering results.
Meanwhile, single cells expressing two sets of well-studied
canonical markers of major cell types were labeled as dou-
blets and excluded from the following analysis. After this
step, a total of 12,170 cells were removed from 130,128 cells,
and 117,958 cells were retained for final analysis. In total,
four major cell types were identified, including CD4+ and
CD8+ T cells (CD3D, CD3E, CD3G, CD40, CD40LG, CD8A,
andCD8B), B cells (CD79A,CD79B,MS4A1, andCD19), NK
cells (GNLY, NKG7, TYROBP, and PRF1), and myeloid cells
(CST3 andLYZ). Thesemajor cell typeswere further classi-
fied into 31 clusters representing different cell types within
major cell lineages (Supplementary Figure S1B). A full list
of canonical and signature marker genes for each cluster is
provided in Supplementary Table S3.

2.4.5 scRNA-seq signature score

For gene scoring analysis, different gene signatures in
subpopulations were compared using the Seurat AddMod-
uleScore function [21]. The immunosuppressive signature
score was defined as the average expression of a series
of immune checkpoint inhibitors [25] and immunosup-
pressive molecules [16], while the dysfunctional signature
score [26] was defined as the average expression of a set of
genes related to T cell dysfunction. In addition, the cyto-
toxic signature score was defined as the mean expression
of genes that translated to effector cytotoxic proteins and
well-described cytotoxic T cell activation markers. A list of
immune co-stimulatory molecules [25, 27] associated with
Treg function and a list of transcription factors (TFs) [28]
related to the T cell exhaustion have also been provided in
Supplementary Table S4, alongside genes included in the
signatures mentioned above.

2.4.6 Differential expression and Gene
Ontology (GO) enrichment analysis

To identify cell cluster-specific differentially expressed
genes (DEGs), two-sided unpaired Wilcoxon tests were
performed on all the expressed genes (expressed in at
least 20% of cells in either cluster of cells) by using the
Seurat FindAllMarkers function. Cell type-specific signa-
ture marker genes were selected and visualized with a
dot heatmap plot or stacked violin plot. Gene expression
feature plots were generated by FeaturePlot, in which
each cell was colored based on the expression level of

the selected gene. The top 50 highly expressed genes of
each cluster are shown in the heatmap plot. Cell cluster-
specific DEGs with an absolute average fold change > 1.5
and adjusted P-values < 0.05 were chosen, and the mito-
chondrial genes or ribosomal genes were excluded for
downstream enrichment analysis. Additionally, the Find-
Markers function was used to calculate TNBC-specific
genes, i.e., TNBC vs. HER2+, TNBC vs. Luminal, and
TNBC vs. Normal. A two-sided unpaired Wilcoxon test
was used for genes expressed by ≥ 10% of cells in either
group. Based on the differential expression from the single-
cell gene expression data, significant enriched GO terms
were then acquired for each cluster using the R package
clusterProfiler (version 4.1.4) [29].

2.4.7 Developmental trajectory inference

To determine potential lineage differentiation between
different B cell populations, trajectory analysis was per-
formedusing theMonocle 2 (version 2.18.0) [30] algorithm.
A CellDataSet object was created using the newCell-
DataSet function with expressionFamily set to be negbino-
mial size. Dimensionality reduction was performed with
the DDRTree algorithm and max_components parame-
ters = 4, using the expression of the top 3,000 highly
variable genes detected as described above. The cell tra-
jectory was then captured using the orderCells function
and the inferred cell trajectories were visualized by the
plot_cell_trajectory function. To visualize genes whose
expression levels changed along with the pseudotime
trajectory, the plot_pseudotime_heatmap function was
used, using genes with adjusted P-value < 0.01, fold
change > 1.5, and belonging to the TFs. To detect genes
that play an important role in cell fate decisions, the
branched expression analysis modeling was implemented
to identify genes with branch-dependent expression. The
plot_genes_branched_heatmap function was used to visu-
alize genes with branch-dependent expression, where the
genes were selected as either q value < 0.05 and belonging
to TFs, or q value< 1 × 10−6 and belonging to the top 3,000
highly variable genes. These genes were also used for GO
enrichment analysis.

2.4.8 Cell-cell ligand-receptor
communication analysis

The CellChat (version 1.1.3) [31] R package was used to
identify and visualize the intercellular communication
networks between T cells and B cells from scRNA-seq
data. The package contained 1,939 pairs of well-curated
ligand and receptor pairs, including 1,199 pairs of secreted
signaling interactions, 319 pairs of cell-cell contact
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interactions, and 421 pairs of extracellular matrix receptor
interactions. Interactions and interaction strength among
different breast cancer groups were calculated, and the
overall information flow of each signaling pathway was
compared. The minimum number of cells required for
cell-cell communication analysis in each cell group was
set to 10. Significant cellular communication pairs with
P < 0.05 were extracted, and the TNBC-specific pathways
were also extracted. That is, there was a significant interac-
tion only in the TNBC subtype but not in the other groups.
All of the significant interactions (ligand-receptor pairs)
were then identified for a list of TNBC-specific pathways,
and their average expression among different cell subtypes
was visualized by the ComplexHeatmap (version 2.6.2)
[32] R package. For a given pair of a ligand and receptor,
a violin plot was used to visualize their expression levels
across groups and samples.

2.5 Survival analyses with gene
signatures

Public gene expression and survival data from the
Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC) [33] dataset were accessed
using the cBioPortal public datahub (https://github.com/
cBioPortal/datahub) [34]. TheTNBC sampleswere defined
asHER2−, ER−, and PR−, and sampleswithmissing values
were removed (n= 293). The public validation dataset was
downloaded from the Gene Expression Omnibus database
(https://www.ncbi.nlm.nih.gov/geo/) with the accession
number GSE31519, and a total of 383 TNBC samples with
available survival data were included in the analysis.
The calculation of the specific cell cluster signature

score was as follows. First, cell cluster-specific genes
were defined as those significantly upregulated in the
specific cell cluster compared to the other clusters, i.e.,
adjusted P-value < 0.01, fold change ≥ 1.5, delta percent-
age ≥ 15%, while excluding mitochondrial/ribosomal/long
non-coding RNA/microRNA genes. Second, the cell
cluster-specific signature score was calculated by aver-
aging the expression of cell cluster-specific genes after
weighting their log2 fold change. Finally, the infiltra-
tion level of the specific cell cluster in the METABRIC
and GSE31519 cohorts was evaluated by the cell cluster
signature score as the continuous variable.
Multivariate Cox regression analyses were utilized to

screen predictors identified by univariate analyses and
select an optimal prognostic model based on the Akaike
information criterion (AIC) method. Multivariable Cox
analyses were adjusted by lymph node status, tumor size,
age at diagnosis, and histological grade. The prognosis risk
score was defined by a combination of selected predictors
weighted by their Cox regression β coefficients. Kaplan-

Meier survival curves were generated by partitioning cases
in a 1:1 split based on the ranked signature expression.
All survival analyses and hazard ratio (HR) calculations
were performed using the survival R package (version 3.2-
11), with survival curves visualized using the survminer
R package (version 0.4.9). Univariate and multivariate
Cox analysis results were visualized as forest plots via the
forestplot R package (version 1.10.1).

2.6 External validation in scRNA-seq
dataset

The scRNA-seq data (GSE176078) was utilized to vali-
date our main findings. The GSE176078 was a scRNA-seq
dataset included a total of 26 breast cancer samples that
were collected from5 treated patients and 21 naïve patients.
The scRNA-seq data derived from the 21 untreated sam-
ples was used to validate our results, including 7 TNBC, 4
HER2+ and 10 luminal-like breast cancer samples.

2.7 Visualization and statistical analysis

The GO enrichment results were visualized as dot or bar
plots by the ggplot2 (version 3.3.5) R package. The bar plot
and pie plot were also generated by the ggplot2 (version
3.3.5) R package. Protein-protein interaction (PPI) net-
works were extracted from the STRING database (https://
cn.string-db.org/) [35, 36], preserving active credible inter-
action that excluded text mining interaction sources. The
PPI networkwas visualized byCytoscape software (version
3.8.2) [37]. Heatmaps were generated by the Complex-
Heatmap (version 2.6.2) R package [32]. The Ridge plot
was visualized by the ggridges (version 0.5.3) R pack-
age. Unpaired two-sided Wilcoxon rank-sum tests were
used for pair-wise comparisons. Statistical significancewas
accepted for P < 0.05. For all differential expression and
gene set testing analyses, P-values were corrected for mul-
tiple testing using the Benjamini-Hochberg protocol. All
statistical analyses were performed in R (version 4.0.5).

3 RESULTS

3.1 Cohort characterization and
single-cell profiling of the immune cells in
breast cancer

A cohort of female patients (n = 17) who were diag-
nosed with invasive ductal breast cancer and underwent
mastectomy were enrolled in this study (Figure 1A). The
median age of patients within this cohort was 61 years
(ranging from 33 to 73 years). Lymph node positivity was
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8 DING et al.

identified in 40% of patients and 60% of patients were
classified as histological grade III. For molecular subtype,
there were 4 patients with TNBC, 6 with HER2+, and 7
with luminal-like breast cancer in this cohort. Detailed
clinicopathological characteristics are listed in Supple-
mentary Table S1. To elucidate the immune landscape of
breast cancer with different molecular subtypes, scRNA-
seq was performed on CD45+ immune cells isolated by
FACS from a panel of 21 freshly resected breast tissue sam-
ples in this cohort: 4 normal mammary tissues, 4 TNBC,
6 HER2+, and 7 luminal-like breast cancer (Figure 1A).
A total of 117,958 high-quality single-cell transcriptomes
of these immune cells were obtained (66.6% from tumor
tissues and 33.4% from normal tissues) (Supplementary
Figure S1A, Supplementary Table S2).
As shown in Figure 1B, 4 major immune cell clusters,

including T cells, B cells, NK cells, and myeloid cells, were
distinguished by examining canonical marker genes when
projecting cells into a 2D UMAP plot (Figure 1C, Supple-
mentary Table S3). By unsupervised clustering, these 4
cell populations were further partitioned into 31 immune
cell subpopulations: 11 T cell clusters, 6 B cell clusters, 6
NK cell clusters, and 8 myeloid cell clusters (Figure 1D,
Supplementary Figure S1B).
To unravel the heterogeneity of the immune cell atlas

in breast cancer, proportions of major cell populations and
subpopulations among different subtypes of breast cancer
and normal tissues were compared (Supplementary Tables
S5-8). Of note, B cells were predominantly enriched in
TNBC, HER2+, and luminal-like breast cancer, but were
scarce in normal tissues, with average proportions of 10.1%,
12.3%, and 7.6%, versus 0.9%, respectively (Figure 1E, Sup-
plementary Figure S1C). Flow cytometry on independent
tumor and normal samples was performed to validate the
findings of scRNA-seq. Similarly, there were fewer B cells
in normal tissues compared to those in TNBC,HER2+, and
luminal-like breast cancer tissues (Figure 1F). Regarding
subpopulations, a lower level of GZMB+ cytotoxic CD8+

T cells was found, but a higher level of FOXP3+ Tregs in
tumors compared to normal tissues was found, indicating
a suppressive TIME in breast cancer (Figure 1E). These
findings were also confirmed by flow cytometry, which
showed that the proportion of cytotoxic CD8+ T cells was
significantly increased, whereas the proportion of Tregs
significantly decreased, in normal tissues compared to in
tumor tissues (Figure 1F, Supplementary Figure S1D).

3.2 Immunosuppressive environment
mediated by T cells in TNBC

It was identified here that T cells constitute the largest
infiltrating immune cell cluster in breast cancer. After
re-clustering 93,115 T cells, a total of 11 T cell clus-
ters were identified based on their signature genes,
including 6 clusters in the CD4+ compartment and
5 clusters in the CD8+ compartment (Figures 2A–C,
Supplementary Figure S2A, Supplementary Table S9).
CD4_c01_Naive_CCR7 highly expressed “naïve” marker
genes, such as CCR7 and SELL. CD4_c05_follicular
helper T (Tfh)_CTLA4 was characterized by high
expression of the CXCL13, CTLA4, BATF, and PDCD1.
CD4_c06_Treg_FOXP3 specifically expressed “Treg”
marker genes, such as FOXP3 and IL2RA. A group of “cyto-
toxic” marker genes (NKG7, PRF1, GZMB, and GZMK)
was highly expressed in CD8_c09_Cytotoxic_GZMB,
while CD8_c10_Exhausted_HAVCR2 was featured by
“exhaustion” marker genes, including TIGIT, CTLA4,
PDCD1, LAG3, and HAVCR2. The functional features of
each cluster were indicated by GO enrichment analyses,
and the cytotoxic and dysfunctional signature scores
further confirmed the annotation for these clusters (Sup-
plementary Figures S2B-C, Supplementary Table S10).
Notably, the distribution pattern of the T cell clusters
was heterogeneous across various molecular subtypes
of breast cancer (Figure 2D). Compared with HER2+

F IGURE 1 Immune cell landscape in different subtypes of breast cancers and normal tissues. (A) Flow chart of the overall study design
and analytic workflow. (B) UMAP showed 4 major immune cell clusters, including T cells, B cells, NK cells, and myeloid cells, from breast
cancers (BC, n = 17) and normal tissue (n = 4). (C) Expression of canonical marker genes used to determine the major clusters (T cells: CD3D,
CD8A, and CD4; B cells: CD79A, MS4A1, and IGHG1; NK cells: NKG7; myeloid cells: CST3). (D) UMAP of the 31 detailed immune cell clusters
of 117,958 cells derived from BC patients and normal tissues. Cell clusters were named based on cluster-specific gene expression patterns. (E)
Proportions of 4 major cell clusters (upper: pie charts) and 31 detailed cell clusters (lower: bar plots) in TNBC (n = 4), HER2+ BC (n = 6),
luminal-like BC (n = 7) and normal tissues (n = 4). (F) Left panel: Proportions of B cells, cytotoxic CD8 T cells, and Treg cells across different
molecular subtypes of breast cancers and normal tissues in flow cytometry (Panel B cells: TNBC, n = 7; HER2+ BC, n = 16; luminal-like BC,
n = 31; normal tissues, n = 38. Panel cytotoxic CD8 T cells: TNBC, n = 5; HER2+ BC, n = 13; luminal-like BC, n = 32; normal tissues, n = 39.
Panel Treg cells: TNBC, n = 4; HER2+ BC, n = 14; luminal-like BC, n = 32; normal tissues, n = 43.) Data are presented as the mean ±SEM. P
values were calculated using the Mann-Whitney U test. **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. Right panel: representative flow
cytometry graphs of B cells across different molecular subtypes of breast cancers and normal tissues. Abbreviations: UMAP, uniform manifold
approximation and projection; BC, breast cancer; TNBC, triple negative breast cancer; HER2+, human epidermal growth factor receptor
2-positive; FACS, fluorescence-activated cell sorting; Treg, regulatory T; SEM, standard error of mean; IFN-γ, interferon-γ.
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10 DING et al.

and luminal-like breast cancers, increased levels of Tregs
(CD4_c06_Treg_FOXP3) and exhausted CD8+ T cells
(CD8_c10_Exhausted_HAVCR2) were found in TNBC,
indicating an immunosuppressive environment (Supple-
mentary Figure S2D). The higher infiltrating levels of
Tregs and exhausted CD8+ T cells in TNBC were also
validated in the external scRNA-seq dataset (GSE176078,
Supplementary Figure S2E).
It has been widely acknowledged that T cells in

the tumor microenvironment are inclined to become
exhausted or suppressed by Tregs, which impedes the
T cell-mediated killing of tumor cells [38]. Thus, here, the
transcriptomic features of Tregs (CD4_c06_Treg_FOXP3),
cytotoxic CD8+ T cells (CD8_c09_Cytotoxic_GZMB), and
exhausted CD8+ T cells (CD8_c10_Exhausted_HAVCR2)
were further dissected (Supplementary Table S11). Tran-
scriptome analyses of Tregs indicated that co-stimulation
genes of LGALS9, TNFRSF4, CD27, and CD28 as well
as immunosuppression-related genes of IL2RA, IL2RB,
IL2RG, ENTPD1, and LAG3 were enriched in TNBC
compared to those in HER2+ and luminal-like breast
cancer, suggesting that Tregs in TNBC harbor a more
significant immunosuppressive function (Figure 2E). Sim-
ilarly, compared to HER2+ and luminal-like breast cancer,
exhausted CD8+ T cells and cytotoxic CD8+ T cells in
TNBC expressed a higher level of dysfunctional signature
genes, such as CXCL13, CCL3, TIGIT, LAG3, HACVR2,
and ENTPD1, as well as TFs related to exhaustion,
such as IFI16, IKZF3, ZNF683, PRDM1 and RBPJ, indi-
cating a higher degree of exhaustion in CD8+ T cells
in TNBC (Figure 2E). Consistent with the results of
gene expression analyses, the distinct immunosuppres-
sive features of T cells in TNBC were also reflected
by the significantly higher immunosuppression signature
score of the Tregs and the higher dysfunctional signa-
ture score of the exhausted CD8+ T cells and cytotoxic
CD8+ T cells (Figure 2F). Collectively, these results demon-
strated that TNBC has a distinct T cell-mediated immuno-
suppression environment with enrichment of Tregs and
exhausted CD8+ T cells as a feature, as well as a more
prominent suppressive function of Tregs and exhaus-
tion tendency of both cytotoxic and exhausted CD8+
T cells.

3.3 Enrichment of plasma cells in TNBC

As the cell population with the most pronounced dif-
ferences in in terms of proportion between tumors
and normal tissues, B cells were further partitioned
into 6 subpopulations, each with its unique signa-
ture genes (Figures 3A-D, Supplementary Table S9).
B_c01_Naive_FCER2 specifically expressed “naïve”
marker genes, such as IGHD and FCER2, and
B_c04_Memory_ZBTB32 highly expressed ZBTB32
and TNFRSF1B. B_c05_Plasma_IGHG1 was character-
ized by the high expression of genes related to antibody
secretion (IGHG4, IGHG1, JCHAIN, MZB1, XBP1, and
PRDM1). Besides genes related to antibody secretion,
B_c06_PB_MKI67 also highly expressed proliferation
genes, such as MKI67, TOP2A, and UBE2C, thus, rep-
resenting proliferating plasmablast. Next, based on the
DEGs from each cluster, the functional characteris-
tics of different B cell clusters were further explored
(Supplementary Figure S3A, Supplementary Table S10).
B_c05_Plasma_IGHG1 was highly associated with the
regulation of complement activation and Fc-γ receptor
signaling pathway, which are both related to humoral
immunity. B_c06_PB_MKI67 was mainly enriched in the
ATP metabolic process and oxidative phosphorylation,
reflecting high energy consumption due to its active prolif-
eration. These findings further validated the annotations
for B cell clusters. When comparing the proportions of
each B cell cluster across different molecular subtypes, it
was found that TNBC exhibited a drastically higher level
of plasma cells (B_c05_Plasma_IGHG1) than HER2+ and
luminal-like breast cancers (48.2%, 1.5%, and 4.0%, respec-
tively; Figure 3E, Supplementary Figure S3B), which was
further confirmed by external validation in scRNA-seq
dataset (GSE176078, Supplementary Figure S3C) and flow
cytometry analyses (Figure 3F, Supplementary Figure
S3D).
To determine the differentiation trajectory of B cell

clusters, pseudotime analyses were performed. The
pseudotime trajectory of B cells preserved two differentia-
tion pathways (Figure 4A), starting with naïve B cells and
endingmostly with thememory B cells at one terminus, or
the plasma cells and plasmablast at the other (Figure 4B).

F IGURE 2 Compositions and functions of T cells in different molecular subtypes of breast cancer and normal tissues. (A) UMAP
visualization of the 11 T cell clusters. (B) Stacked violin plot displaying the expression of selected marker genes in 11 T cell clusters. (C)
Heatmap of top 50 DEGs in each T cell cluster. (D) Bar plots presenting the proportions of 11 T cell clusters in different breast cancer
molecular subtypes (left panel) and samples (right panel). (E) Heatmap showing the expression pattern of selected genes in Treg cells (left
panel), exhausted CD8 T cells (middle panel), and cytotoxic CD8 T cells (right panel) across different breast cancer molecular subtypes. (F)
Violin plot comparing the signature scores in Treg cells (left panel), exhausted CD8 T cells (middle panel), and cytotoxic CD8 T cells (right
panel) across different breast cancer molecular subtypes. P values were calculated using the Mann-Whitney U test. ****, P < 0.0001.
Abbreviations: UMAP, Uniform manifold approximation and projection; TNBC, triple negative breast cancer; HER2+, human epidermal
growth factor receptor 2-positive; DEG, differentially expressed gene; Treg, regulatory T cell.
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12 DING et al.

Although cells belonging to the same clusters could
be distributed into different differentiation pathways,
analyses showed a continuous transition process from
naïve B cells to memory B cells to finally ending with
plasmablast and plasma cells, according to the pseudo-
time order (Figure 4C). Alongside this transition process,
“naïve” marker gene expression levels (IGHD and FCER2)
significantly decreased, while genes related to prolifera-
tion (MKI67, TOP2A, and UBE2C) and antibody secretion
(IGHG1, IGHG3, JCHAIN, PRDM1, and XBP1) exhibited
an increased level of expression with the emergence of
plasma cells and plasmablast (Figure 4C). Differentially
expressed TFs along this transition process, such as BCL6,
IRF4, and E2F5, were also displayed in Figure 4C, and
might be key players in the differentiation process.
According to the position in the trajectory branch, B cells

were divided into three groups, termed as Pre-branch,
Path I, and Path II (Figure 4D). About 75.1% of naïve
B cells were defined as Pre-branch. The majority of mem-
ory B cells were located in Path I, with memory B cells
(B_c04_Memory_ZBTB32) constituting the highest pro-
portion (89.8%). Nevertheless, nearly all plasma cells and
plasmablast were grouped into Path II, with proportions
of 95.2% and 92.0%, respectively. Interestingly, the two-
path differentiation mode existed in all subtypes of breast
cancer, but the differentiation pattern varied (Figure 4D).
B cells in TNBC tended to differentiate from Pre-branch
to Path II, with 82.7% of B cells distributed in Path II
and 4.4% of B cells distributed in Path I. In contrast,
B cells in HER2+ and luminal-like breast cancers were
more likely to differentiate from Pre-branch to Path I
rather than Path II, with only 8.1% and 11.5% of B cells
located in Path II, respectively (Figure 4D, Supplementary
Figure S4A).
Signature genes and enriched GO pathways for Pre-

branch, Path I and Path II were identified (Figure 4E,
Supplementary Figure S4B, Supplementary Tables S12-14).
Cells in Path I highly expressed several genes encod-
ing heat shock proteins (HSPs), such as Hsp70 mem-
bers (HSPA1 and HSPA8) [39] and Hsp90 members
(HSP90AA1and HSP90AB1) [40], which acted as impor-
tant immunomodulators in antigen presentation andT cell
activation [41]. Cells in Path II highly expressed the
genes associated with antibody synthesis and humoral

immunity, such as XBP1 [42] and MZB1 [43], and genes
encoding immunoglobulins. In addition, PPI network
analyses based on differentially expressed TFs of each
path suggested that some genes might be the key regula-
tory TFs in B cell differentiation, such as STAT1 in Path
II, MYC in Path I and JUN in Pre-branch (Supplemen-
tary Figure S4C). Furthermore, different gene expression
patterns were also observed along the two different trajec-
tory paths (Figure 4F). Along with the cellular trajectory
of B cells from Pre-branch to Path I, the expression lev-
els of genes related to T cell differentiation and leukocyte
cell-cell adhesion were gradually elevated (Figure 4F, Sup-
plementary Tables S12-14). On the other hand, along with
the cellular trajectory of B cells from Pre-branch to Path II,
increased expression of genes enriched in B cell activation,
immunoglobulin mediated immune response, and the Fc-
γ receptor signaling pathway was observed (Figure 4F,
Supplementary Tables S12-14).
Overall, these results indicated that B cells in TNBC

exhibited distinct differentiation patterns compared to
other molecular subtypes. Specifically, B cells in TNBC
tended to differentiate into plasma cells and plasmablasts,
exerting the effect of humoral immunity. However, B cells
inHER2+ and luminal-like breast cancersweremore likely
to differentiate into memory B cells, exerting the effect of
T cell activation.

3.4 Distinct T cell-B cell crosstalk in
TNBC

To determine the potential mechanism driving the above-
mentioned distinct T and B cell infiltration patterns in
TNBC, the expression levels of ligand-receptor pairs in 11
T cell clusters and six B cell clusters were investigated to
predict T cell-B cell interactions. A total of 229 function-
ally related signaling pathways composed of 2,021 validated
molecular interactions were analyzed. The results showed
that 26 signaling pathways were active in T cell-B cell
crosstalk but the composition and relative strength of these
signaling pathways varied by molecular subtype (Sup-
plementary Figure S5A, Supplementary Tables S15-16).
Specifically, the CD86 and CD39 signaling pathways were
specifically active in TNBC, while the CXCL signaling

F IGURE 3 Heterogeneity of B cell subsets among different breast cancer molecular subtypes and normal tissues. (A) UMAP
visualization of the 6 B cell clusters. (B) UMAP plots showing the expression of selected marker genes on 6 B cell clusters. (C) Stacked violin
plot showing the expression level of selected marker genes in each B cell cluster. (D) Heatmap of top 50 DEGs across 6 B cell clusters. (E) Bar
plot showing the proportions of 6 B cell clusters in different breast cancer molecular subtypes (left panel) and samples (right panel). (F)
Proportions of plasma cells in tumor-infiltrating B cells across different breast cancer molecular subtypes in flow cytometry (TNBC, n = 5;
HER2+ breast cancer, n = 11; luminal-like breast cancer, n = 26). Data are presented as the mean ± SEM. P values were calculated using the
Mann-Whitney U test. **, P < 0.01. Abbreviations: UMAP, Uniform manifold approximation and projection; TNBC, triple negative breast
cancer; HER2+, human epidermal growth factor receptor 2-positive; DEG, differentially expressed gene.
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14 DING et al.

pathways were predominantly derived fromHER2+ breast
cancer. Pathways that were significantly more promi-
nent in TNBC were then systemically investigated and
screened for, of which the T cell-B cell interactions
based on 29 ligand-receptor pairs were mostly enriched
between memory B cells (B_c04_Memory_ZBTB32), plas-
mablasts (B_c06_PB_MKI67), CTLA4+ Tfh (CD4_c05_Tfh
_CTLA4), Tregs (CD4_c06_Treg_FOXP3), and exhausted
CD8+ T cells (CD8_c10_Exhausted_HAVCR2) (Figure 5A).
By evaluating the communication probability

(Figure 5B) and ligand-receptor pair expression level
(Figures 5C-D, Supplementary Figure S5B) of interactions
with an immunoregulatory function, 7 TNBC-enriched
T cell-B cell interactions were finally identified among
the 5 clusters that may facilitate the distinct TIME in
TNBC, which are highlighted in the cord diagram (Sup-
plementary Figure S5C). It was found that the IL16-CD4
pair was highly expressed between B_c06_PB_MKI67
and CD4_c06_Treg_FOXP3 in TNBC. As previous stud-
ies have shown that IL-16 can recruit Tregs [44, 45],
in the present study, it was hypothesized that plas-
mablasts are more likely to attract Tregs into the TIME
of TNBC. Moreover, plasmablasts (B_c06_PB_MKI67
were also predicted to interact with exhausted CD8+
T cells (CD8_c10_Exhausted_HAVCR2) via the LGALS9-
HAVCR2 pair in TNBC in this study (Figures 5B-C).
This interaction may cause an increased level of
exhausted T cells because it has been reported that
LGALS9 negatively regulated Th1 cell responses by
binding to HAVCR2, resulting in the induction of
T cell apoptosis and exhaustion [46, 47]. In addition,
the strong CD27-CD70 interactions in TNBC identi-
fied in our analyses may facilitate T cell exhaustion
(Figures 5B-C), as the persistent delivery of costim-
ulatory signals via CD27-CD70 interactions could
exhaust the T cell pool according to the previous
study [48]. Besides, Tregs (CD4_c06_Treg_FOXP3) and
exhausted CD8+ T cells (CD8_c10_Exhausted_HAVCR2)
showed strong potential interaction with memory
B cells (B_c04_Memory_ZBTB32) by ligand-receptor
pairs ICOSLG-CTLA4 and CD86-CTLA4 in TNBC,
which might also contribute to the suppressive TIME

(Figures 5B-C). Moreover, it has been previously reported
that CD39 could turn extracellular ATP into extracellular
adenosine (ADO), which could combine its receptor
ADORA2A to actuate immunosuppressive TME [49].
As an exclusive signaling pathway in TNBC, the CD39
signaling pathway enables the communication of mem-
ory B cells (B_c04_Memory_ZBTB32) with exhausted
CD8+ T cells (CD8_c10_Exhausted_HAVCR2) via the
ENTPD1 (CD39)-ADORA2A pair, which could promote
the immunosuppression in TNBC as well (Figures 5B-C).
Here, memory B cells (B_c04_Memory_ZBTB32) in

TNBC highly expressed ICOSLG and CXCR5, while Tfh
cells (CD4_c05_Tfh_CTLA4) in TNBC highly expressed
ICOS and CXCL13 (Figure 5D). A previous study revealed
that ICOSLG expressed by B cells could regulate T cell-
B cell signal exchange within the germinal center,
thereby promoting B cells to become long-term antibody-
producing plasma cells [50]. It has also been reported
that CXCL13-producing Tfh cells could be chemoattracted
by CXCR5+ B cells to form the germinal center, fur-
ther promoting the differentiation of memory B cells
to plasma cells [51]. Therefore, the prominent ICOSLG-
ICOS interaction and CXCL13-CXCR5 interaction between
B_c04_Memory_ZBTB32 and CD4_c05_Tfh_CTLA4 in
TNBC may have formed a positive cycle that promotes
plasma cell differentiation unique to TNBC, which would
explain the high proportion of plasma cells in TNBC.
Together, the specific T cell-B cell crosstalk in TNBC

based on IL16-CD4, LGALS9- HAVCR2, CD27-CD70,
ICOSLG-CTLA4, CD86-CTLA4, and ENTPD1 (CD39)-
ADORA2A pairs was attributed to the immunosuppressive
TIME, while the prominent ICOSLG-ICOS and CXCL13-
CXCR5 interaction helps the TIME build a favorable
environment for B cells to differentiate into plasma cells
(Figure 5E).

3.5 Prognostic signature based on
T cell-B cell crosstalk in TNBC

As the results of this study suggested that T cell-B cell
crosstalk might help to shape the distinct TIME in TNBC,

F IGURE 4 Pseudotime analysis defines two differentiation patterns of B cells in different molecular subtypes of breast cancer. (A)
Pseudotime trajectory of B cells. (B) Distribution of B cell subsets in the trajectory graph. (C) Ridge distribution of B cell subsets (upper panel)
along pseudotime and heatmap of the expression level of selected marker genes and transcriptional factors (lower panel) along the
pseudotime. (D) Identification of different paths in trajectory analyses of B cells (total: upper panel; different groups: middle panel) and
proportions of different B cell paths in each cluster and group (lower panel) (E) Pseudotemporal gene-expression profiles of the top 20 (by fold
change) DEGs of each path. Columns are points in pseudotime, rows are genes, and the beginning of pseudotime is in the middle of the
heatmap. (F) Pseudotemporal gene expression profile along two branches. Left panel: The heatmap of DEGs along with the pseudotime from
Pre-branch to Path I or Path II, which were clustered hierarchically. Right panel: The top GO terms enriched in each gene cluster.
Abbreviations: TNBC, triple negative breast cancer; HER2+, human epidermal growth factor receptor 2-positive; DEG, differentially
expressed gene; GO, Gene Ontology.
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it was hypothesized that relevant genes and cell clusters
involved in the T cell-B cell crosstalk might provide sig-
nificant prognostic information for patients with TNBC.
Therefore, a prognostic signature was generated based on
T cell-B cell crosstalk in TNBC.
Firstly, the prognostic value of the involved genes and

cell clusters in the METABRIC dataset was evaluated,
where DEGs-based single-cell-derived gene signatures
were used to estimate the infiltrating level of distinct
cell clusters (Supplementary Table S17). The results indi-
cated that CTLA4, ICOS, CXCL13, CD4_c05-Tfh_CTLA4,
CD4_c06_Treg_FOXP3, CD8_c10_exhausted_HAVCR2,
and B_C04_memory_ZBTB32 were significantly related
to the relapse-free survival (RFS) and overall survival (OS)
in patients with TNBC (Figure 6A, Supplementary Figure
S6A). Secondly, according to multivariate Cox regression
analysis based on the above seven predictors, the TBCSwas
constructedwith three selected predictors, namelyCTLA4,
CD4_c06_Treg_CTLA4, and B_c04_memory_ZBTB32.
The TBCS for each patient’s calculation was as follows:
(−0.534 × CTLA4) + (1.152 × CD4_c06_Treg_FOXP3
score) + (−1.805 × B_c04_memory_ZBTB32 score). After-
ward, the prognosis between the high- and low-risk group
divided by the risk score of the patients with TNBC in the
METABRIC dataset and an external validation dataset
(GSE31519) was compared to validate the prognostic value
of TBCS (Figure 6B, Supplementary Figure S6B). Patients
in the high-risk group had significantly worse RFS
(P = 0.000,75) and OS (P = 0.000,59) in the METABRIC
dataset and worse RFS in the external validation dataset
(P = 0.023; Figure 6C). After adjusting for age, tumor
size, lymph node status, and tumor grade (Figure 6D),
patients with TNBC in the high-risk group had a worse
prognosis compared to those in the low-risk group for
both RFS (HR = 1.800; 95% confidence intervals [CI],
1.240-2.613; P = 0.002) and OS (HR = 1.620; 95% CI,
1.170-2.242; P = 0.004). However, TBCS failed to predict
the prognosis in patients with HER2+ breast cancer (P >
0.05) or luminal-like breast cancer (P > 0.05), suggesting
that the unique prognostic value of TBCS was particularly
beneficial for patients with TNBC (Supplementary Figure
S6C).

3.6 Enrichment of cytotoxic NK cells
and plasmacytoid dendritic cells in TNBC

Besides T and B cells, the distribution patterns of NK and
myeloid cells in TNBCwere also found to differ from those
of other molecular subtypes of breast cancer. A total of
10,676 NK cells were re-clustered into 6 subsets, including
4 NK clusters and 2 NKT clusters (Figures 7A-D; Supple-
mentary Tables S9-10). NK_c03_Cytotoxic_GZMB exhib-
ited elevated expression levels of the “cytotoxic” marker
genes (GZMB, GZMA, and CST7), and DEGs of this clus-
ter were mainly associated with oxidative phosphorylation
and the ATP metabolic process, suggesting its exuber-
ant biological activity. NK_c04_Exhausted_HAVCR2 that
highly expressed HAVCR2, an exhausted marker gene,
was related to negative regulation of the immune system
process and negative regulation of cell killing, indicating
its exhausted state. Both NKT_c05_Activated_CD69 and
NKT_c06_Exhausted_LAG3 highly expressed the T cell
marker gene (CD3G) and NK cell marker gene (GNLY and
NKG7), thus were annotated as NKT cells.
Interestingly, similar to normal tissues, TNBC exhibited

comparably high levels of cytotoxic NK cells but low levels
of exhausted NK cells, representing an NK-active antitu-
mor environment. In contrast, HER2+ and luminal-like
breast cancers were enriched with exhausted NK cells but
had few cytotoxic NK cells, indicating their NK-exhausted
protumor environment (Figure 7E). This disparate NK cell
infiltration pattern indicated that patients with TNBCmay
not benefit from NK-targeted therapy due to the relatively
high level of cytotoxic NK cells at baseline, potentially
limiting the capabilities of drugs to further strengthen
the antitumor effect of NK cells. Nevertheless, NK-based
immunotherapy is suggested for the development of suit-
able treatments forHER2+ and luminal-like breast cancers
due to their NK-exhausted microenvironment.
Likewise, myeloid cells were further partitioned

into 8 subclusters based on their signature genes
(Supplementary Figures S7A-D, Supplementary Table
S9). Two kinds of macrophages were identified:
M_c01_Macro_C1QB, which highly expressed C1QB and
APOE, and M_c02_Macro_IL1B, which highly expressed

F IGURE 5 Cell-cell communication analysis indicates unique T cell-B cell interactions in TNBC. (A) Heatmap showing the expression
level of ligand-receptor pairs within TNBC-significant cell communications in the overall population. (B) Comparison of the significant
ligand-receptor pairs across different subtypes. Dot color represents the communication probability of the specific ligand-receptor pair
between sender cluster and receiver cluster. (C) Violin plot showing the expression level of ligand-receptor pairs associated with significant
signaling pathways in TNBC which indicates B cells could help to construct the immunosuppressive microenvironment dependent on T cells.
(D) Violin plot showing the expression level of ligand-receptor pairs associated with significant T cell-B cell crosstalk existed in TNBC that
may facilitate the differential of B cells to plasma cells. (E) Summarization of representative TNBC-significant T cell-B cell crosstalk that
might modulate its distinct immunoenvironment. The ligand is written as the former and the receptor as the latter followed by a dash. Cell
type that expresses each gene is noted by the color. The arrows on the line point to the receptors. Abbreviations: TNBC, triple negative breast
cancer; HER2+, human epidermal growth factor receptor 2-positive.
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IL1B and FCN1. In addition, monocytes featured by CD14,
FCN1, and S100A9; neutrophils featured by FCGR3B and
CSF3R; mast cells featured by TPSB2 and CPA3; and
three dendritic cell (DC) clusters, including two classic
DCs (M_c04_cDC_CD1C and M_c05_cDC_CLEC9A)
and one plasmacytoid DC (pDC, M_c06_pDC_CLEC4C),
were identified and were consistent with their functional
enrichment results (Supplementary Figure S7E, Sup-
plementary Table S10). The distribution pattern of M
subclusters varied considerably across different molecular
subtypes of breast cancer (Supplementary Figure S7F).
Compared to HER2+ and luminal-like breast cancer,
TNBC featured an increased level of pDC, which has been
reported to contribute to breast cancer progression and a
poor overall prognosis [52, 53], indicating that targeting
pDCmay be an attractive therapeutic strategy to overcome
tumor immune tolerance for TNBC.

4 DISCUSSION

Understanding the TIME is of great significance for
improving disease prognosis and guiding immunotherapy,
but the characterization of the immune landscape inTNBC
compared with that of luminal-like and HER2+ breast
cancer remains limited. In this study, it was found that
TNBC has a distinct immunosuppressive TIME feature as
reflected by the enrichment of Tregs and exhausted CD8+
T cells, and its companion B cells tend to differentiate
to plasma cells, which is potentially driven by T cell-
B cell crosstalk. The TBCS was further generated for the
prediction of TNBC prognosis.
Characterizing T cell infiltration and its functions pro-

vides novel therapeutic targets for breast cancer. As is
widely accepted, ICBs exert their antitumor effect by
unleashing the cytotoxic CD8+ T cells in the tumor envi-
ronment [54], while the cytotoxic activities of these effector
T cells could be suppressed by Tregs [55], restraining the
efficiency of ICBs. Here, it was hypothesized that the low
response to ICB in some patients with TNBC may partly
be attributed to the enrichment of Tregs; thus, combina-

tion therapy depleting Tregs may improve the response
rate in such patients. CD8+ T cell exhaustion is poten-
tially another factor hindering the immunotherapy effect
[56]. As found in the present study, the exhausted CD8+
T cell level was enriched in TNBC, and a fraction of
cytotoxic CD8+ T cells appeared to be in a transition
state to exhaustion, indicating their constrained tumor-
cytotoxic activity. Therefore, preventing cytotoxic CD8+
T cells from reaching exhaustion or reactivating exhausted
CD8+ T cells might be a possible therapeutic strategy in
TNBC, which has already gained increasing attention from
researchers and yielded fruitful results [57, 58]. Collec-
tively, the appropriate immunotherapy strategy for TNBC
should aim at effective immunosuppression reversal by
depleting or inhibiting Tregs, preventing T cell exhaustion,
and invigorating exhausted T cells, which warrants further
exploration in the future.
Tumor-infiltrating lymphocytes exert great influence on

tumor growth and the immunotherapy response, while the
role of B cells in solid tumors is understood to a much
lesser extent compared to that of T cells. Current opinions
hold that B cells could exert both protumor and antitumor
effects, depending on their phenotype, secreted antibod-
ies, and the surrounding TME [59]. On the one hand,
B cells could protect against tumors by producing anti-
bodies tomediate antibody-dependent cell cytotoxicity and
by presenting tumor-derived antigens to T cells to initi-
ate antitumor immunity. On the other hand, B cells could
promote tumor progression by releasing immunosuppres-
sive cytokines, which facilitate the development of Tregs
and the immunosuppressive phenotype of myeloid cells
[60, 61]. The controversial prognostic role of B cells has
been reported in different tumor types. High levels of B
and plasma cells are related to an improved prognosis in
melanoma, lung adenocarcinoma [62], and non-small cell
lung cancer [63], whereas they are correlated with poor
survival outcomes in glioblastoma and renal cell carci-
noma [64]. In breast cancer, conflicting evidence exists
for the prognostic role of B cells and plasma cells, with
some studies reporting an association with a worse prog-
nosis [65, 66], and others suggesting an association with a

F IGURE 6 Construction of prognostic signature based on unique T cell-B cell interactions in TNBC. (A) Prognostic value of specific
genes and cluster signature for RFS in METABRIC TNBC patients. Forest plot showing HR and 95% CI derived from univariate and
multivariate Cox analyses adjusted for age, tumor size, node status, and tumor grade. Within the forest plot, HR for each variable is depicted
as a box, and 95% CIs are shown as horizontal lines. The vertical line crossing the value of 1 represents a non-statistically significant effect,
and odds greater than one indicate worse effects. (B) Distribution of risk score, relapse status, the expression level of genes, and cell cluster
signature involved in the prognostic model among TNBC patients in METABRIC (upper panel) and external validation set (lower panel). (C)
Kaplan-Meier curves of RFS or OS between low-risk patients and high-risk patients in METABRIC TNBC patients (left and middle panels)
and external validation set (right panel), indicating that high-risk patients had a significantly poor prognosis. (D) Predictive performance of
the prognostic signature according to univariate and multivariate Cox analyses adjusted by age, tumor size, node status, and grade, suggesting
the signature was an independent predictor for RFS and OS. Abbreviations: RFS, relapse-free survival; OS, overall survival; HR, hazard ratio;
CI, confidence interval; TNBC, triple negative breast cancer.
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better prognosis [67, 68]. These controversial results may
be attributed to the heterogeneity of B cell subsets and
functions in different types of breast cancer. Here, the
single-cell portrait of B cells was thoroughly investigated,
and the enrichment of plasma cells was revealed in TNBC
for the first time at the single-cell level. It was also found
that B cells tend to differentiate to plasma cells, which is
promoted by interplay between B cells and T cells, which
may contribute to the T cell-mediated immunosuppres-
sive feature in TNBC. The potential role of plasma cells as
prognostic factors or predictive biomarkers and as agents
or targets of immunotherapy in TNBC requires further
investigation.
Recently, the importance of T cell-B cell interactions in

tumor immunity has attracted increased attention. Sev-
eral T cell-B cell crosstalk mediated by cytokines or direct
interactions have been revealed,which suppress antitumor
T cell responses and contribute to immune suppression
[69]. It has been found that immunosuppressive B cells can
interact with T cells via the PD-1/PD-L1 pathway, leading
to the attenuation of T cell activation [70]. It has also been
found that tumor-infiltrating B cells may restrain T cell
responses via the interaction between OX40L on B cells
andOX40 onT cells in variousmurine solid tumors such as
EL4 thymoma andMC38 colon cancer [71]. Besides inhibit-
ing antitumor T cell responses, potentiating the local
expansion of Tregs is another mechanism of T cell-B cell
interactions to induce immunosuppression. For example,
regulatory B cells (Bregs) have been reported to promote
the proliferation of Tregs through interactions between
CD5 and CD27, which, in turn, induce the development
of Bregs [72]. In the present study, a unique T cell-B cell
crosstalk pattern enriched in TNBC was identified. This
finding, combinedwith previous reports on specific ligand-
receptor pair function, resulted in the hypothesis that the
unique T cell-B cell crosstalk may lead to greater Treg
infiltration and CD8+ T cell exhaustion as well as plasma
cell differentiation. These T cell-B cell interactions not
only help to establish the TBCS to predict the prognosis
for TNBC but also pave the way for future therapeutic
approaches to remodel the TIME by targeting this unique
T cell-B cell crosstalk pattern or synergistic combinations
of immunotherapies.
As an independent prognostic factor for TNBC, the

TBCS refined the risk stratification for patientswithTNBC.
Several immune-related genes or immune cell populations

have been reported to be capable of providing prognostic
information for breast cancer, such as the CD8+ TRM sig-
nature [15], naïve B signature, and Bmem signature [16].
However, the combinational prognostic signature integrat-
ing the single-gene expression level with the cell cluster
infiltration level evaluated by the cell cluster signature
score derived from scRNA-seq data was put forward for
the first time, to our knowledge, in the present study. The
candidate prognostic genes and cell clusters for TBCSwere
selected based on unique T cell-B cell crosstalk in TNBC,
which could help to cultivate a distinct immunemicroenvi-
ronment according to this study’s analyses. Therefore, the
TBCS may reflect the whole picture of immunity status in
breast cancer, thus, enabling it to provide comprehensive
and reliable prognostic information.
NK cells play important roles in the innate immune

responses against tumors and represent an emerging target
for tumor immunotherapies. Nevertheless, the character-
istics of NK cells so far have been poorly addressed in
breast cancer at the single-cell level. In this study, it was
found that TNBC has a relatively higher infiltration level
of cytotoxic NK cells as compared to that of the other two
subtypes of breast cancer, suggesting that a limited ben-
efit can be obtained from NK cell-based immunotherapy
for TNBC. Conversely, rather than cytotoxic NK cells, the
exhausted NK cells were enriched in HER2+ and luminal-
like breast cancers, which makes these two subtypes with
a poor response to ICBs potential ideal candidates for NK
cell-based immunotherapy. Collectively, the findings of
this study not only highlighted the different features of var-
ious molecular subtypes of breast cancer but also provided
NK-based immunotherapy as a promising research direc-
tion for retarded development in HER2+ and luminal-like
breast cancer.
One limitation of this study lay in the limited sample

size for scRNA-seq, especially upon assigning to different
molecular subtypes. The study design for sequencing
isolated immune cells made the sample preparation more
difficult because of the low immune infiltration in breast
cancer. However, the major findings of the immune cell
infiltration level of different molecular subtypes of breast
cancer were further confirmed by flow cytometry in
additional samples and the published scRNA-seq dataset,
which increased the credibility of the conclusions of this
study to some extent. Another limitation of the study
was the lack of single-cell transcriptomic data of tumor

F IGURE 7 HER2+ and luminal-like BC display different features in NK cells infiltration compared to TNBC. (A) Distributions of the 6
NK cell subsets in the UMAP plot. (B) Stacked violin plot of the expression of selected marker genes in each NK cluster. (C) Heatmap of top 50
DEGs across 6 NK cell clusters. (D) Bar plots exhibiting top 5 GO enrichment terms of DEGs from each cluster. (E) Bar plots presenting the
proportions of 6 NK cell clusters in different molecular subtypes (left panel) and samples (right panel). Abbreviations: UMAP, Uniform
manifold approximation and projection; NK, natural killer; TNBC, triple negative breast cancer; HER2+, human epidermal growth factor
receptor 2-positive; DEGs, differentially expressed genes; GO, Gene Ontology.
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cells, which limited the prediction to cell-cell interactions
between tumor and immune cells. Previous studies have
mentioned that tumor mutations could influence T cell
infiltration and function in the microenvironment, which
is worth further exploration [73]. The present study
focused on the immunomodulatory role of immune cells
but fell short of exploring the possible capabilities and
mechanisms of tumor cells in remodeling the immune
microenvironment. However, performing scRNA-seq
on immune cells isolated from samples improved the
sequencing depth of the immune cells, which enabled the
presentation of a more detailed depiction of the immune
landscape in different molecular subtypes of breast cancer.
The lack of experimental validation on the function
of specific T cell-B cell crosstalk was also a limitation.
Combined with the findings of cell-cell communication
analyses and previous reports on specific ligand-receptor
pair functions, it was hypothesized that the distinct TIME
of TNBC may be driven by unique T cell-B cell crosstalk,
which requires further experimentation to confirm.

5 CONCLUSIONS

The present study comprehensively characterized the dis-
tinct immune landscape of TNBC in comparison with
that of HER2+, luminal-like breast cancer, and normal
breast tissues by single-cell profiling. TNBC has a unique
TIME featuring T cell-mediated immunosuppression and
an abundance of plasma cells, potentially shaped by T cell-
B cell interactions. A TBCS was established to predict the
prognosis for patients with TNBC. Furthermore, the find-
ings of this study provide insight into the potential targets
for future immunotherapy strategies in differentmolecular
subtypes of breast cancer.
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