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Abstract
Multidimensional analyses have demonstrated the presence of a unique
tumormicroenvironment (TME) in liver cancer. Tumor-associatedmacrophages
(TAMs) are among themost abundant immune cells infiltrating the TME and are
present at all stages of liver cancer progression, and targeting TAMs has become
one of the most favored immunotherapy strategies. In addition, macrophages
and liver cancer cells have distinct origins. At the early stage of liver cancer,
macrophages can provide a niche for the maintenance of liver cancer stem cells.
In contrast, cancer stem cells (CSCs) or poorly differentiated tumor cells are
key factors modulating macrophage activation. In the present review, we first
propose the origin connection between precursor macrophages and liver cancer
cells. Macrophages undergo dynamic phenotypic transition during carcinogen-
esis. In this course of such transition, it is critical to determine the appropriate
timing for therapy and block specific markers to suppress pro-tumoral TAMs.
The present review provides a more detailed discussion of transition trends of
such surface markers than previous reviews. Complex crosstalk occurs between
TAMs and liver cancer cells. TAMsplay indispensable roles in tumor progression,
angiogenesis, and autophagy due to their heterogeneity and robust plasticity. In
addition, macrophages in the TME interact with other immune cells by direct-
ing cell-to-cell contact or secreting various effector molecules. Similarly, tumor
cells combined with other immune cells can drive macrophage recruitment and
polarization. Despite the latest achievements and the advancements in treatment
strategies following TAMs studies, comprehensive discussions on the communi-
cation between macrophages and cancer cells or immune cells in liver cancer
are currently lacking. In this review, we discussed the interactions between
TAMs and liver cancer cells (from cell origin to maturation), the latest thera-
peutic strategies (including chimeric antigen receptormacrophages), and critical
clinical trials for hepatocellular carcinoma (HCC) and intrahepatic cholangiocar-
cinoma (iCCA) to provide a rationale for further clinical investigation of TAMs
as a potential target for treating patients with liver cancer.

KEYWORDS
hepatocellular carcinoma, intrahepatic cholangiocarcinoma, tumor-associated macrophages,
immunotherapy

1 BACKGROUND

Emerging evidence has shown that the TME plays a piv-
otal role in driving cancer progression and governing
the response to standard-of-care therapies [1]. Multiple
components coexist and interact in the TME, includ-
ing tumor-associated macrophages (TAMs), CD4+ and
CD8+ T cells, dendritic cells (DCs), natural killer (NK)
cells, tumor-related endothelial cells (ECs), abnormal
tumor vasculature, cancer-associated fibroblasts (CAFs),
and myeloid-derived immunosuppressive cells (MDSCs).

As a dynamic system orchestrated bymultiple cellular and
non-cellular components, each cellular component in the
tumor immune microenvironment represents a potential
target for reprogramming the TME (Figure 1).
Clinical studies and experimental mouse models have

indicated that TAMs are particularly abundant among
innate and adaptive immune cells recruited to the tumor
milieu [2–4]. TAMs typically exhibit distinct functional
phenotypes. M1-like TAMs exert pro-inflammatory and
anti-tumor activities, whereas M2-like TAMs exert anti-
inflammatory and tumor-promoting effects. M2 TAMs can
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F IGURE 1 TAMs in the liver cancer immune microenvironment. TAMs constitute the core cell population of the tumor immune
microenvironment in liver cancer. BM and embryos are the most critical sources of TAMs, followed by the spleen. The immunosuppressive
cell population (based on TAMs) facilitates tumor progression and suppresses the immune response. In contrast, increasing infiltration of
immune cell populations, including M1 and cytotoxic T lymphocytes, is associated with a better clinical prognosis. Abbreviations: TAMs,
tumor-associated macrophages; M1 TAMs, M1 type tumor-associated macrophages; M2 TAMs, M2 type tumor-associated macrophages; BM,
bone marrow; NK cell, natural killer cell

promote cancer initiation, suppress antitumor immunity,
stimulate angiogenesis, and enhance tumor cell invasion,
motility and intravasation [5, 6] (Figure 1). However, the
classification of macrophages is far more complex than
previously thought, and the markers on the surface of
macrophages are constantly in flux as cancer progresses
[7, 8]. Rather than simply classifying macrophages, in the
present review, we provide a comprehensive discussion
of the subpopulation and the dynamic transformation of
markers on their surfaces. Specific macrophage subsets
assume distinct roles in cancer progression and antitumor
immunity [9]. Traditional flow cytometry and histologi-
cal methods to define TAMs appear to be limited because
of the inability to capture the full diversity of the cells
or distinguish them from other cell populations. With
the development of single-cell technology and spatial
transcriptomics, determining the origin and spatial dis-
tribution of TAMs and identifying specific macrophage
markers to design targeted and personalized medicine is
essential for preventing and treating hepatic malignancies
[10, 11].

Very few systematic reviews have discussed the interac-
tions between the origin of macrophages and cancer cells
in liver cancer. We first propose a relationship between
precursor macrophages and liver cancer stem cells. This
potential interaction in cellular evolution contributes to
a better understanding of how macrophages can promote
early-stage liver cancer progression and develop appropri-
ate treatment strategies. Therefore, the interactions of cell
origins cannot be ignored. Moreover, it is unclear whether
macrophage precursors interact with other immune cell
precursors, such as lymphoid cell precursors. Additional
research is required to test such hypotheses.
In the past, associated research on TAMs mainly has

focused on how TAMs interact with cancer cells and their
phenotype switching [12–16]. The present review is a more
in-depth discussion than previous reviews. We described
the effects ofmacrophages on cancer cells and summarized
the regulation of macrophages by cancer cells. Moreover,
we discussed the regulation of macrophage metabolism,
including glucose metabolism, lipid metabolism, and
amino acid metabolism, which are also essential key
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research directions of our research group [15, 17, 18]. The
liver is vital for metabolic homeostasis; therefore, more
metabolomic data on liver TAMs are warranted to con-
firm that macrophage metabolism regulates liver cancer
progression.
The role of the formation of an immunosuppressive

microenvironment is not limited to TAMs alone. Studies
on the relationship between macrophages and CD8+ T
cells are currentlywidespread [19, 20]. However, studies on
the relationships betweenmacrophages and other immune
cells, such as CD4+ T cells, B cells, Tregs, and MDSCs, are
still lacking. The reciprocal regulation between TAMs and
these cells is an important and novel research direction.
Finally, we divided themacrophage-targeted therapy for

liver cancer into three categories based on published stud-
ies and summarized the latest treatment strategies and
clinical trials compared to those of the past. Combination
therapy is the primary treatment strategy for liver can-
cer [21]. We explored studies on combined therapy with
multi-target inhibitors such as sorafenib or lenvatinib and
evaluated the efficacy of immune checkpoint inhibitors
(ICIs) such as anti-programmed cell death protein 1 (PD-
1) [22–24]. A critical hypothesis is whether macrophage
metabolism disorder is the core resistance mechanism to
such drugs. To support such conclusions, more studies on
liver cancer are required to explore drug resistance targets
around macrophage metabolism.
In summary, in the present review, we illustrated the

potential origin connection between TAMs and liver can-
cer cells, the dynamic transitions of TAMs, and the latest
insights into therapeutic strategies used with TAMs in
the liver field, with particular emphasis on interactions
between these and other cells in the liver cancer microen-
vironment, which could promote the clinical translation of
macrophage-based combination therapy.

2 POTENTIAL ORIGIN CONNECTION
BETWEEN TAMs AND LIVER CANCER
CELLS

TAMs are one of the most abundant infiltrative immune
cells in tumor stroma and play a pivotal role in inflamma-
tion. They can be divided into two categories according to
their source: tissue-resident macrophages and monocyte-
derived macrophages (MoMϕs) [10]. In the normal liver,
macrophages mainly exist in the form of tissue-resident
macrophages, namely Kupffer cells (KCs). Increasing evi-
dence shows that tissue-resident macrophages may be
derived from erythromyeloid progenitors (EMPs) that
express the macrophage colony-stimulating factor 1 recep-
tor (CSF1R) in the yolk sac or fetal liver [25]. During
liver cancer progression, tissue-resident macrophages are

stimulated by pro-tumorigenic factors, which causes them
to undergo a phenotypic switch and eventually become
TAMs. Recent data have confirmed that EMPs can produce
pre-macrophages (pMacs) and differentiate into KCs in a
chemokine-receptor-dependent manner [26]. The sources
of KCs are also diverse, contributing to the significant
heterogeneity in the resident cells of liver tissues. When
becoming malignant, macrophages undergo sequential
stages as EMPs, monocyte progenitors, maturemonocytes,
KCs, and TAMs. Therefore, unraveling the mystery of this
heterogeneity is essential for targetedmacrophage therapy
[27, 28] (Figure 2).
Another main line of macrophage genesis is very com-

plex and lengthy. Embryonic hematopoietic stem cells that
colonize the fetal liver (embryonic period) and migrate to
the bone marrow (BM, adult period) can serve as a source
ofmonocytes. MoMϕs penetrate tumor tissues through the
blood and differentiate into TAMs during liver cancer [29,
30] (Figure 2). Furthermore, splenic monocytes represent
a secondary source of TAMs, which can play a significant
role in the inflammatory response following acute injury
[31, 32].
Liver stem/progenitor cells are known as hepatic pro-

genitor cells in humans and oval cells in rodents. We
previously conducted multiple studies on liver progenitor
cells [33, 34]. Clinical and pathological analyses of com-
bined hepatocellular cholangiocarcinoma (CHCCA) have
revealed the characteristics of progenitor cells [35]. These
findings suggest that CHCCA originates directly from liver
progenitor cells. The current consensus is thatmature hep-
atocytes and bile duct cells derived from hepatic progen-
itor cells or precursor cells transform into hepatocellular
carcinoma (HCC) and intrahepatic cholangiocarcinoma
(iCCA), respectively, in the presence of cancer-stimulating
factors [36, 37]. Intriguingly, adult hepatocytes and bile
duct cells can dedifferentiate into precursor cells, ulti-
mately transforming into cancer cells with progenitor cell
markers [38]. Moreover, hepatocytes can transdifferenti-
ate into bile duct-like cells and evolve into iCCAs [39]
(Figure 2).
Recently, a significant discovery revealed that tissue-

resident macrophages could provide a pro-tumorigenic
niche for early cancer [10]. Based on our previous liver
cancer research, we proposed that KCs combined with
hepatic stellate cells (HSCs) may facilitate the dissolu-
tion of the basement membrane. This process could allow
residual hepatic cancer stem cells in the canals of Hering
to move into the adjacent hepatic lobe and differentiate
into cancer cells [34]. Macrophages undergoing malignant
transformation can regulate liver precursor cells before
maturation and provide a unique niche for maintaining
CSCs and controlling their behavior from the time of their
origin.
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F IGURE 2 Potential origin connection between TAMs and liver cancer cells. (A) Erythroid progenitor cells can differentiate into pMacs
and monocyte progenitors. Hematopoietic stem cells are also a source of monocyte precursor cells. pMacs and monocyte progenitors
differentiate into tissue-resident macrophages (KCs in the liver) during growth in the body. Such cells maintain themselves by self-renewal
and can bind to peripheral blood monocytes to serve as two essential sources of TAMs when stimulated by certain cancer factors. (B) Liver
progenitor cells have strong differentiation potential. Oval cells may be a subset of liver progenitor cells. Liver cancer and cholangiocarcinoma
usually originate from mature hepatocytes and bile duct cells formed by precursor cells. Mixed cell carcinomas are primarily derived directly
from progenitor cells. (C) The hepatic progenitor cells located in the canals of Hering have a subtle connection with TAM development during
mature hepatocytes formations and subsequent transformation into hepatocarcinoma cells. TAMs can enable cancer cells to form a pre-tumor
niche. The development of cancer cells recruits a large number of mononuclear-derived macrophages and activates tissue-resident
macrophages. Abbreviations: pMacs, pre-macrophages; KCs, Kupffer cells; TAMs, tumor-associated macrophages; M1 TAMs, M1 type
tumor-associated macrophages; M2 TAMs, M2 type tumor-associated macrophages; HCC, hepatocellular carcinoma; iCCA, intrahepatic
cholangiocarcinoma; HCC-iCCA, hepatocellular carcinoma and intrahepatic cholangiocarcinoma

CSCs or poorly differentiated tumor cells in themicroen-
vironment act as crucial factors inmodulatingmacrophage
activation (Figure 2). Recently, the discovery of oncofe-
tal reprogramming of the tumor ecosystem revealed that
reprogramming of embryonic HCC ECs promotes the
production of immunosuppressivemacrophages [40]. Fur-

thermore, a novel subgroup of cells with a resident
CXCR5−PD-1−BTLA−CD69high phenotype has been iden-
tified. These protumorigenic T follicular helper (TFH) cells
can create conditions for M2b macrophage polarization
through the interleukin 21 (IL21)- interferon-gamma
(IFNγ) pathway [41]. Such findings suggest that cancer
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cells and other immune cells can influence macrophages
during the early stages of liver cancer.
As more TAM sources are characterized, the diversity

and complexity of macrophages in the TME will be better
understood. In addition, both macrophage differentiation
and cancer cell development are inextricably linked. We
discuss these processes in depth in this review, offering
the tantalizing possibility of using therapies targeting the
recruitment of primitive macrophage subsets and their
communication with hepatic progenitors and progeny.

3 TAMs ARE RECRUITED AND
ACTIVATED IN THE LIVER CANCER
NICHE

TAMs are recruited and activated by different chemokines
in the immuno-inflammatory microenvironment of
liver cancer and differentiate into particular polarized
forms associated with specific pathological conditions.
Macrophages can be divided into twodifferent polarization
states according to the state and function of macrophage
activation: classically activatedM1macrophages and alter-
natively activatedM2macrophages [42]. Both polarization
forms are interconvertible under specific circumstances
and in the presence of certain stimuli. M1 macrophages
usually play pro-inflammatory roles and secrete large
amounts of pro-inflammatory cytokines. Classical
macrophage activation can occur when cells are stimu-
lated with: 1) lipopolysaccharide, a component of the cell
wall of gram-negative bacteria, 2) IFN-γ, released by NK
cells and type 1 T helper (Th1) cells, 3) tumor necrosis fac-
tor (TNF), 4) granulocyte-macrophage colony-stimulating
factor (GM-CSF), and 5) Toll-like receptor (TLR) ligands
[43]. Activated M1 macrophages secrete certain inter-
leukins, chemokines and TNF-α to elicit pro-inflammatory
effects and can also exert cytotoxic effects by activating
nitric oxide synthase (NOS2) or inducible nitric oxide syn-
thase (iNOS) to produce NO and release reactive oxygen
species (ROS). In addition, M1-type macrophages, which
highly express major histocompatibility complex type II
(MHC-II), can regulate and promote Th-1 type cellular
immune responses by presenting antigens to T cells [44].
In contrast, M2 macrophages usually perform func-

tions opposite to those of M1 macrophages. The cytokines
IL-4, IL-10, IL-13 and transforming growth factor-β (TGF-
β) are secreted by Th2 cells and tumor cells, and CSF1
and prostaglandin E2 (PGE2) can induce the alternative
activation of macrophages resulting in the M2 polarized
phenotype. M2 macrophages can secrete several complex
immunosuppressive factors, cytokines, and growth factors;
regulate Th-2 type immune responses; promote tumor cell
growth, and participate in tumor angiogenesis [45].

Furthermore, owing to their high heterogeneity, M2-
type macrophages are usually divided into four subtypes:
M2a,M2b,M2c, andM2d [46]. The phenotypic heterogene-
ity and plasticity of theM2macrophage subtypes have been
described in diseases such as atherosclerosis [47]. Table 1
presents a detailed summary of the surface markers of
human and mouse macrophages. Research on the specific
subtypes of M1/M2 TAMs in liver cancer has been incon-
clusive. Therefore, it is urgent and necessary to classify the
unique phenotypes exhibited by M1/M2 TAMs and pro-
pose precise targeted therapies for disparate patients with
various stages of cancer. For example, the results of single-
cell RNAsequencinghave indicated thatmicroglia-derived
TAMs are predominant in newly diagnosed glioblastoma.
In patients with tumor recurrence, monocyte-derived
TAMsoutnumbermicroglia-derivedTAMs [48]. Such find-
ings indicate that tumor intervention strategies may be
distinct at multiple stages.
Dynamic phenotypic transitions accompany

macrophage recruitment and activation. Quiescent
KCs originate from yolk sac-derived CSF1R+ EMPs, which
are usually CD11blow, F4/80high, CD68+ and Ly6C− [49,
50]. The predominant hepatic macrophages are located
under the sinusoid endothelium and are involved in
scavenging dying cells, pathogens, and molecules. In one
study, the inhibitor of differention-3 (ID3)+ progenitors
were found to infiltrate the fetal liver during embryoge-
nesis and are essential for giving rise to self-maintaining
KCs [26] (Figure 3).
MoMϕs are usually CD11b+, F4/80low, CSF1R+, C-C

motif chemokine ligand 2 (CCL2)+and Ly6C− [51, 52].
These cells may be derived from CX3CR1+CD117+Lin−
progenitor cells in the BM [53]. Regarding mouse mod-
els of liver disease, hepatic MoMϕs are divided into two
main subpopulations according to their Ly6C-expression
levels: Ly6Chigh and Ly6Clow MoMϕs [54]. Similar to
pro-inflammatory M1 macrophages, Ly6Chigh MoMϕs can
exacerbate inflammation and fibrogenesis [55]. A previous
report indicated that recruited CCR2+Ly6Chigh mono-
cytes replaced embryonic precursor cells and differenti-
ated into mature anti-inflammatory macrophages. This
finding showed that Ly6Chigh MoMϕs had similar char-
acteristics to M1 TAMs, while M2 TAMs usually showed
low expression of Ly6C. Therefore, Ly6C is a significant
dynamic surfacemarker during the evolution of TAMs [56]
(Figure 3).
In addition, macrophages expressing CD11bhigh,

F4/80low and Ly6Chigh may constitute an early
macrophage phenotype in the dynamic TAM envi-
ronment in the liver [8, 57]. Moreover, the surface markers
of M2-like TAMs appear to be consistent with those of
CD11blow, F4/80high and Ly6Clow MoMϕs. These three
markers exhibit dynamic phenotypic transitions in the
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TABLE 1 Stimuli, Secretion and Markers of macrophage in Human and Mouse

M1 M2
Markers Markers

Stimuli Secretion Surface Intracellular Stimuli Secretion Surface Intracellular
ATP CCL4 CCR5(CD195) IRF5 CSF-1 Arg-1 B7-H4 IRF4
GM-CSF CCL5 CD11b(ITGAM) NOS2(iNOS) IL-1R CCL1 CCR2(CD192) STAT6
IFNγ CCL8 CD14 STAT1 IL-4 CCL2(MCP1) CCR5(CD195) Ym1*
LPS CCL10 CD16(FCγR3A) IL-6 CCL5 CD11b(ITGAM)
TLR CCL11 CD32 IL-10 CCL17 CD14
TNF CXCL1 CD40 IL-13 CCL18 CD40

CXCL2(MIP-2a) CD64(FCGR1A) PEG2 CCL22 CD68(SCARD1)
CXCL3 CD68(SCARD1) TGF-β CCL24 CD115(CSF1R)
CXCL5 CD80(B7-1) CXCL10 CD163
CXCL8 CD86(B7-2) CXCL16 CD169(Siglec-1)
CXCL9 CD115(CSF1R) EGF CD206(MRC1)
CXCL10 CD169(Siglec-1) Fizz1* CD209(DC-SIGN)
Galectin-3 CD204 Galectin-3 CD369(Dectin-1)
IFNγ F4/80* IDO F4/80*
IL-1α Galectin-3 IL-4 FcεR1
IL-1β IL-1R IL-10 Galectin-3
IL-6 Ly-6C* IL-12 Ly-6C*
IL-12 Ly-6G* MMP9 Ly-6G*
IL-18 Mer (MerTK) PDGFβ MACRO
IL-23 MHC II PPARγ MHC II
TNFα TLR2(CD282) TGFβ PD-L1(CD274)

TLR4(CD284) TNFα PD-L2
PD-L1(CD274) VEGF Tie
PD-L2 Ym1* TLR1

TLR7
TLR8

*Only Mouse

TAM environment, which suggests that surface markers
can be used to track the distribution of TAMs to deter-
mine the progression of liver cancer [40, 58]. Although a
schematic waterfall model of TAMs development has also
been described, we further summarized the published
research on liver cancer and generated a more detailed
map of dynamic phenotypic transitions in macrophages
during carcinogenesis [57] (Figure 3).
The transcriptional profiles of the human liver

have been reported with the help of single-cell RNA
sequencing. Researchers have segregated intrahep-
atic CD68+ macrophages into two distinct populations:
the CD68+ macrophage receptor with collagenous
(MARCO)+ immunoregulatory phenotype and the
CD68+ MARCO− proinflammatory phenotype [59, 60].
Human CD68+ MARCO+ cells are transcriptionally sim-
ilar to the mice population participating in maintaining
immune tolerance and suppressing inflammation. This

observation indicated that a subtype of suppressive TAMs
express MARCO. In contrast, CD68+ MARCO− cells are
strongly associated with inflammation. This macrophage
subpopulation is characterized by the enriched expression
of inflammatory genes [59]. This classification is consis-
tent with the characteristics of our defined macrophage
subpopulation, which affects inflammation during
development (Figure 3).
A recent study has demonstrated that glutamyl-tRNA

amidotransferase, subunit A 6 (GATA6) macrophages
couldmigrate toward sites of injury and repair focal lesions
rapidly when the human body suffers peritoneal injury.
However, abdominal adhesions can occur as a side effect
of this otherwise beneficial repair process [61]. The rapid
response of macrophages plays a decisive role in adhesion.
However, whether GATA6 macrophages can serve as a
source of TAMs that participate in liver cancer progression
remains unclear.
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F IGURE 3 Dynamic phenotypic transition of TAMs during liver cancer progression. (A) KCs are unique macrophages in the liver and
are part of the mononuclear phagocyte system. Those KCs in the liver sinusoids can phagocytize foreign antigens, antigen-antibody
complexes, and cell debris and also secrete cytokines, which is unfavorable for cancer initiation. DCs and HSCs present in the space of Disse
cooperate with other immune cells such as KCs to maintain the liver immune microenvironment. (B) The immune microenvironment of liver
cancer (HCC or iCCA) is constantly changing. The resident macrophages inside the tumor can alter their phenotype following stimulation.
Furthermore, numerous circulating monocytes in the peripheral blood, including Tie+ monocytes, are recruited to the tumor milieu. Prior to
converting pro-tumoral TAMs, CD11b and Ly6C are highly expressed, while F4/80 is low. Nevertheless, TAMs, which suppresses the immune
response, have higher F4/80 and lower CD11b and Ly6C levels of expression. HSCs in the space of Disse are also activated and may synergize
with TAMs to promote liver cancer progression. Abbreviations: KCs, Kupffer cells; DCs, dendritic cells; HSCs, hepatic stellate cells; HCC,
hepatocellular carcinoma; iCCA, intrahepatic cholangiocarcinoma; Clec4F, C-type lectin domain family 4 member F; Tim-4, T-cell
immunoglobulin and mucin domain-containing 4; CX3CR, C-X3-C motif chemokine receptor; CSF1R, colony-stimulating factor 1 receptor;
CCR2, C-C motif chemokine receptor 2; MHC-II, major histocompatibility complex class II; GATA, glutamyl-tRNA amidotransferase, subunit
A; MoMFs, monocyte-derived macrophages; MACRO, macrophage receptor with collagenous

Tie2-expressing monocytes (TEMs) play an important
role in tumor angiogenesis, and selective elimination
of these TEMs through suicide genes has become a
novel treatment strategy [62, 63]. Some research groups
have developed a mathematical framework for systemat-
ically estimating the roles of TEMs in the M1 and M2
macrophage phenotypes during the growth of vascularized
tumor lesions [64]. TEMs have been identified as a dis-
tinct TAM subpopulation influencing tumor angiogenesis,
vascular remodeling and monocyte differentiation [65].
Although previous findings have revealed the recruit-

ment of macrophages and dynamic switching of surface
markers, these processes vary across cancer types. In addi-
tion, convincing evidence on how human macrophages

recruit and find suitable surface markers is required to
formulate strategies based on targeting macrophages.

4 M1 TAMs AND LIVER CANCER

Classically activated (or inflammatory) macrophages
exhibit anti-cancer properties. In HCC, M1 can inhibit
tumor progression through various mechanisms [66–68].
Most current research is focused on regulating genes or
proteins in cancer cells that can induce the polarization
or infiltration of macrophages. The matricellular protein
spondin2 (SPON2) activates RhoA and Rac1 and increases
F-actin reorganization through SPON2-α4β1 integrin



CHENG et al. 9

signaling to promote the infiltration of M1-like
macrophages [69]. High sirtuin1 (SIRT1) expression
in hepatoma carcinoma cells regulates M1 polarization via
theNF-κBpathway [70]. In addition, an increase in retinoic
acid-inducible gene I (RIG-I) expression can promote the
M1 polarization of mouse peritoneal macrophages via the
RIG-I/MAVS/TRAF2/NF-κB pathway, thereby inducing
apoptosis of HCC cells [71]. Furthermore, monocytes
overexpressing IL-12 can downregulate phospho-signal
transducer and activator of transcription 3 (p-STAT-3) and
c-Myc to directionally differentiate into M1 and inhibit
HCC growth [72]. However, M1 also shows a positive
correlation with cancer, and this abnormal mechanism
is relatively rare. For instance, M1 macrophages secrete
IL-1β to activate hepatoma carcinoma cells and induce
programmed cell death protein 1 ligand 1(PD-L1) expres-
sion through the transcription factors IRF1 and NF-κB
[73](Figure 4). Therefore, M1 TAMs and M2 TAMs are
not always mutually exclusive; on the contrary, the two
types of cells often coexist in the TME. Consequently, the
two types of macrophages cannot be considered entirely
distinct macrophage populations. The function favored
by the mixed TAMs phenotype depends on the balance
between macrophage activation and suppression and the
immune microenvironment.
M1 TAMs-derived exosomes surface-modified with

IL4RPep-1(named IL4R-Exo si/mi) reportedly suppress the
IL-4 receptor of M2 TAMs and decrease the levels of M2
cytokines. Such findings indicated that IL4R-Exo(si/mi)
induces the M1 TAMs phenotype and enhances antitu-
mor immunity [74]. Multiple studies have shown that M1
macrophages are positively associated with response to
anti-PD-1 therapy. Persistent DNA damage contributes to
the cyclic GMP-AMP synthase (cGAS)-stimulator of inter-
feron genes (STING) signaling pathway in M1 TAMs. Acti-
vated M1 TAMs induce T-lymphocyte infiltration, which
could enhance the response to anti-PD-1 [75]. Inhibition of
p38 kinase phosphorylation and downstream Creb1/Klf4
activity in bone marrow-derived macrophages by rego-
rafenib reverses M2 polarization and enhances synergistic
antitumor effect with anti-PD-1 [76]. In a recent study,
human leukocyte antigens DR (HLA-DR)high CD86high
glycolytic phenotype macrophages were shown to repre-
sent the primary cellular source of PD-L1 in human HCC
tumors. Inhibiting the critical glycolytic enzyme pyruvate
kinase M2 (PKM2) or PD-L1 blockade liberated the inher-
ent antitumor capability of PKM2+ glycolyticmacrophages
by producing antitumorigenic cytokines such as IL-12p70.
In addition, patients with more PD-L1+PKM2+ glycolytic
TAMs demonstrated a poorer prognosis [77].
In a phase I Hodgkin lymphoma clinical trial, using

PI3Kδ/γ inhibitor RP6530 could switch macrophages to
the M1 phenotype. PI3Kδ/γ inhibition is an effective ther-

apeutic strategy for Hodgkin lymphoma [78]. The higher
the CD137 level in the serum and the higher the M1 den-
sity in the matrix in 50 patients with advanced HCC who
received sintilimab (anti-PD-1) plus IBI305 (a bevacizumab
biosimilar), the longer the median progression-free sur-
vival and median overall survival [24]. β-site amyloid pre-
cursor protein-cleaving enzyme 1 (BACE1) inhibitor MK-
8931 potently reprogramed M2 TAMs into M1 TAMs via
inhibiting IL-6-STAT3 signaling and activatedmacrophage
phagocytosis in cancer cells [79]. Encouragingly, MK-8931
has been tested in clinical trials for Alzheimer’s disease
(AD) treatment and suggested that M1-type antitumor
macrophages were positively associated with a favorable
prognosis [80]. Interfering different signaling pathways
in macrophages or blocking receptors on the surface of
M2 TAMs to convert them into M1 TAMs is an attractive
clinical translational strategy.

5 M2 TAMs AND LIVER CANCER

5.1 M2-TAMs contribute to cancer cell
stemness in liver cancer

In hepatic tumors, the essential characteristics of aggres-
siveness are associated with achieving stemness. CSCs
are self-renewing cells that can facilitate tumor initiation
and enhance immune resistance. Cancer cells with these
biological properties may positively correlate with tumor
development andmetastasis. It is particularly important to
clarify the crosstalkmechanisms between TAMs and CSCs
in HCC.
Compared with tumor cells, the interaction between

CSCs and TAMs plays a more central role in tumorigen-
esis, progression, and metastasis formation. Inflammatory
microenvironment-related secreted S100 calcium-binding
protein A9 (S100A9) is highly expressed in TAMs. S100A9
can promote the stemness of hepatoma carcinoma cells by
activating the NF-κB signaling pathway. Intriguingly, HCC
cells treated with S100A9 can recruit more macrophages
via chemokine ligand 2 [81]. Macrophage-induced long
noncoding RNAH19 upregulation enhances stemness and
promotes tumorigenesis, confirming that macrophage-
induced H19 is significantly correlated with HCC progres-
sion [82]. Besides, cytokines (TNF-α, IL-6, and TGF-β) and
low levels of microRNAs (miRNAs, such asmiR-125a and
miR-125b) derived from M2 TAMs can also promote can-
cer stemness and CSC expansion [13, 83-85](Figure 4). The
intervention of CSCs by targeting TAMs is a novel tumor
immunotherapy strategy.
The interaction between TAMs and CSCs is bidirec-

tional. Periostin (POSTN; a member of the fasciclin
family secreted by CSCs) may significantly promote the
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F IGURE 4 Crosstalk between TAMs and liver cancer cells. An extensive and intricate network exists between tumor cells and TAMs.
M1-type macrophages exhibit anti-tumor effects through various mechanisms, with abundant crosstalk between M2 macrophages and tumor
cells, which is closely related to tumor progression. Tumor cells and HCC-related macrophages coordinate to adapt to the immune
environment of HCC. Abbreviations: TAMs, Tumor-associated macrophages; M1 TAMs, M1 type Tumor-associated macrophages; M2 TAMs,
M2 type Tumor-associated macrophages; HCC, hepatocellular carcinoma; PPAR, peroxisome proliferators-activated receptors; IRF1,
interferon regulatory factor 1; SIRT4, sirtuin 4; ERK, extracellular regulated protein kinase; MEK, mitogen-activated protein kinase kinase;
MAPK, mitogen-activated protein kinase; YAP, yes-associated protein 1; TAZ, tafazzin; HGF, hepatocyte growth factor; MIF, migration
inhibitory factor; EZH2, enhancer of zeste 2 polycomb repressive complex 2 subunit; FAK, focal adhesion kinase; TNF-α, tumor necrosis
factor α; CCL2, C-C motif chemokine ligand 2; CCL17, C-C motif chemokine ligand 17; CCL22, C-C motif chemokine ligand 22; ECT2,
epithelial cell transforming 2; S100A9, S100 calcium binding protein A9; SIRT1, sirtuin 1; RIG-I, retinotic acid-inducible gene I; HMGB1, high
mobility group box 1;MMP9, matrix metallopeptidase 9;TGF-β, transforming growth factor-β; IL-6, interleukin 6;IL-10, interleukin 10; IL-1β,
interleukin 1β; IL-13/34, interleukin 13/34; TWEAK, tumor necrosis factor-like weak inducer of apoptosis; TNFR1, tumor necrosis factor
receptor 1; IL-1R, interleukin 1 receptor; TLR2, toll-like receptor 2; SPON2, matricellular protein spondin2; PD-L1, programmed cell death
protein 1 ligand 1; AGER, advanced glycosylation end product-specific receptor; TCA, tricarboxylic acid cycle

recruitment of M2 TAMs in iCCA [86]. CSCs in iCCA
release multiple molecules, such as IL13, OA and IL34,
which can guide macrophage precursors to the M2-like
cancer-promoting phenotype [87]. In conclusion, further

understanding of the biology of CSCs and elucidating the
interaction between CSCs and TAMs in various stages
of tumor growth are the keys to mitigating liver cancer
progression.
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5.2 M2 TAMs facilitate cancer cell
proliferation, aggressiveness, and
metastasis

Althoughmost of the current related researchhave focused
on tumor-derived exosomes, the presence of TAM-derived
exosomes is necessary for tumor progression and metas-
tasis [88, 89]. Alternatively, activated (M2) macrophages
can secrete the cytokine CCL22 to enhance tumor inva-
sion and induce epithelial-mesenchymal transition (EMT)
via Smad2/3 and Smad1/5/8 activation and Snail upregula-
tion [90]. In addition, CCL17 secreted by M2 macrophages
is closely related to tumor stemness and EMT in the TGF-
β1 and Wnt/β-catenin signaling pathways [91]. In vitro
data have indicated thatM2-TAMsorchestrate the immune
microenvironment of iCCA by secreting various cytokines,
such as TNF-α, ICAM-1, IL-6, and modulating the EMT
of cancer cells [92](Figure 4). In an animal model of ICC,
tumor cells were shown to accelerate THP-1 cells (human
acute monocytic leukemia cell line) differentiation into
M2 macrophages, and the polarized macrophages could
secrete IL-10 to promote the growth, invasion and EMT of
liver cancer cells [93].
The accumulation of KCs-derived ROS and paracrine

TNF causes mitochondrial dysfunction and induces oxida-
tive stress, which could lead to the formation of pre-
malignant lesions [94]. TNF has been positively associ-
ated with bile duct cell proliferation and carcinogene-
sis. Blocking the ROS/TNF/JNK axis may be an effec-
tive therapeutic strategy for attenuating the growth of
iCCA tumors [94]. Intriguingly, enhanced communica-
tion between TAMs and tumor-associated cells also pro-
moted cancer invasion and metastasis. After co-culturing
tumor-associated neutrophils (TANs) with macrophages,
oncostatin M and interleukin-11 were both expressed at
higher levels than in the corresponding individual cul-
tures. Crosstalk between TANs and TAMs was shown to
enhance the proliferation and aggression of ICC via STAT3
signaling [95].
The above studies suggest that macrophages play excit-

ing roles in tumorigenesis. Therefore, an attractive thera-
peutic strategy for liver cancer could be to block commu-
nication between M2 TAMs and liver cancer cells, such
as using noncoding RNA inhibitors and TAMs receptor
inhibitors.

5.3 M2 TAMs stimulate angiogenesis in
liver cancer

Angiogenesis is essential for hepatocarcinogenesis and
metastasis due to the hypervascular nature of most HCC
tumors. Angiogenesis in HCC is a multidimensional pro-

cess orchestrated by hepatoma carcinoma cells and a
repertoire of tumor-associated stromal cells, including
TAMsand their bioactive products. The tumor-microvessel
density correlated positively with macrophage counts,
which revealed a crucial role for TAMs in early-stage
HCC neovascularization [96]. In recent years, the mono-
cyte/macrophage subpopulation, characterized by the
expression of the tyrosine kinase receptor Tie-2, has
attracted attention. TEMs mainly aggregate in the perivas-
cular area of tumor tissues and participate in HCC
angiogenesis [97].
Human macrophage metalloelastase (HME) and vas-

cular endothelial growth factor (VEGF) have been impli-
cated in tumor angiogenesis. The balance between HME
and VEGF gene expression can significantly affect tumor
angiogenesis [98, 99]. For instance, cytokines derived from
ICC cells can induce macrophage differentiation into
M2-TAMs, with increased vessels and VEGF expression
[100].
Macrophage populations and phenotypes are positively

correlated with angiogenesis and clinical prognosis in
liver cancer. CCR2+ TAMs are more abundant at the
edge of highly vascularized HCC, while the absence of
CCR2+ TAM infiltration attenuates pathogenic vascular-
ization [101]. A case-controlled study showed that CD14+
inflammatory macrophages secreted large amounts of
IL-23 after stimulation by hepatitis virus-infected hepato-
cytes, accompanied by the upregulation of IL-23 receptors
and intense macrophage-associated angiogenesis [102]. In
addition, CD14+ CD16+ monocytes from patients with
liver cancer express high levels of angiogenic factor-related
genes (epiregulin, VEGF-A and CXCL3) and predict the
tissue invasive character of iCCA [103].
Hypoxic TAMs acquire angiogenic and immunosup-

pressive properties. Regulated in development and DNA
damage response 1 (REDD1), a negative regulator of
the mechanistic target of rapamycin (mTOR), was sig-
nificantly upregulated in hypoxic TAMs. This inhibitor
can hinder glycolysis and the vascular-hyperactivation
response in TAMs. Thwarting glycolysis in REDD1-
knockout TAMs may lead to abnormal angiogenesis [104].
The pro-angiogenic properties of TAMs and vasculo-

genic mimicry in TME are fundamental reasons for the
poor prognosis of tumor patients. The accumulation of
macrophages was shown to correlate with the emergence
of resistance to anti-VEGF therapy in a preclinical model
[105]. The escape from VEGF-directed treatment may
be due to the downregulation of VEGFR-1 and VEGFR-
3 and the upregulation of angiogenic-promoting genes.
Such a key finding suggests that using VEGF blockade
combined with macrophage blockade (such as CSF1 or
CCR2 inhibitors) could enhance the anti-VEGF therapeu-
tic response.
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5.4 TAM-associated autophagic
progress in liver cancer

Substantial evidence has demonstrated that autophagy
plays an essential role in cell stress response, thereby
maintaining internal environment stability. Listeria-based
HCC vaccines induce autophagy in TAMs via the Toll-
like receptor 2 (TLR2)/Myd88/NF-κB pathway [106]. The
induction of autophagy led to macrophage repolarization
from the M2 to the M1 phenotype and recruited mount-
ing anti-tumor cytokines. Although ICIs have achieved
promising therapeutic outcomes in liver cancer, ICIs
still have a low response rate. Combined with PD-
1 blockade, this vaccine induced a robust antitumor
response and reshaped the tumor immune microenviron-
ment [106]. Additionally, TAMs can induce autophagy
in HCC cells and attenuate the toxic effects of oxali-
platin. This autophagy-mediated, drug-resistance mech-
anism provides a new therapeutic strategy [107]. Other
findings have unveiled the autophagy-associated tumor
necrosis factor receptor-associated factor 2 (TRAF2) degra-
dation and RelB/p52 activation can initiate TAM repro-
gramming toM1macrophages, as observed in the presence
of baicalin [108]. Moreover, autophagy in macrophages is
triggered by the high-mobility group box 1/Toll-like recep-
tor 2/NADPH oxidase 2 (HMGB1/TLR2/NOX2) autophagy
axis, where hepatoma-derived HMGB1 can skew TAMs
to the M2-like phenotype to support HCC growth [109]
(Figure 4).
Autophagy is critical for controlling macrophage pro-

duction and polarization at different stages. Modulating
autophagy in TAMs could be a promising strategy for
inhibiting liver cancer growth and progression.

5.5 Liver cancer cells enhance the M2
phenotype by releasing cytokines and
exosomes

Tumor-derived extracellular vesicles are essential medi-
ators of cell-to-cell communication during tumorigene-
sis. Macrophages can release cytokines and exosomes,
which can in turn affect tumor cells. Similarly, liver cancer
cells secrete different factors into their local environment,
promoting macrophage polarization.
Emerging evidence suggests that liver cancer cell-

derived exosomes facilitate cancer progression. Exosomal
Sal-like protein-4 (SALL4) binds to the promoter region
of miR-146a-5p and upregulates its expression in HCC-
derived exosomes. In addition, SALL4 plays a key role
in T cell exhaustion [110]. Liver tumor-derived lncRNAs
(such as TUC339), circRNAs (such as hsa_circ_0074854),
and miRNAs (such as miR150) are implicated as critical

signaling mediators that orchestrate macrophage M1/M2
polarization [111–113](Figure 4).
Cholangiocarcinoma cells can also secrete multiple

cytokines to guide macrophages into the tumor milieu.
Tumor necrosis factor-like weak inducer of apoptosis
(TWEAK), a chemical messenger, and its receptor Fn14
are overexpressed in iCCA cohorts. TWEAK/Fn14 expres-
sion correlated positively with CAF proliferation. TWEAK
derived from TAMs can bind to the Fn14 receptor on iCCA
cells and increase theMonocyte chemoattractant protein-1
(MCP-1) secretion. MCP-1 can recruit more monocytes to
enter the tumor and transform into TAMs [114](Figure 4).
In this section, we emphasized on how tumor cells regu-

late TAMs by releasing cytokines and exosomes. However,
these studies are mostly limited to the animal level. Con-
sequently, more robust evidence is required to facilitate
the translation of basic research into clinical practice. For
example, in a phase III clinical trial againstmelanoma, Tal-
imogene laherparepvec (T-VEC), a herpes simplex virus
type 1-derived oncolytic immunotherapy, could selec-
tively replicate within tumors and recruit macrophages to
enhance systemic antitumor immune responses [115].

5.6 Liver cancer cells modulate the
metabolic reprogramming of TAMs

Previous studies have highlighted the role of metabolic
reprogramming in macrophage activation. This process of
switching from a quiescent to an activated state can direct
macrophage differentiation and regulate the function of
these immune cells. In both mice and humans, glycolytic
metabolism is involved in the classical activation of M1
TAMs, whereas mitochondrial oxidative phosphorylation
is restricted to alternative activation of M2 TAMs [116].
Thus, glycolysis upregulation in specific macrophages
may cause them to acquire an anti-tumor phenotype.
Nevertheless, macrophage metabolism is more complex
than previously thought. Previous reports have shown
that elevated glycolysis can regulate PD-L1 levels and
lead to M2-type polarization [117, 118]. Recent data
demonstrated a population of macrophages displaying
an HLA-DRhighCD86high PD-L1+ glycolytic phenotype in
HCC tumors. Intrinsic glycolytic metabolism confers PD-
L1+macrophages with anti-tumorigenic properties [77].
Thus, targeting glycolytic metabolism in macrophages
abrogated the PD-L1-mediated immune privilege. Tumor-
derived soluble factors, including hyaluronan fragments,
can modulate glycolysis in peritumoral monocytes by
up-regulating 6-phosphofructo-2-kinase/fructose-2,6-
biphosphatase 3 (PFKFB3). This key glycolytic enzyme
orchestrates cellular metabolism and induces PD-L1
expression to attenuate cytotoxic T lymphocyte responses
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in tumor tissues [119]. Thus, there is an urgent need
to understand the glycolytic status of macrophages
and their precursor monocytes at different stages and
to target critical glycolytic enzymes. In addition, the
culture supernatant of HCC cells can activate the
Wnt2b/β-catenin/c-Myc signaling pathway and augment
the glycolysis of M2 TAMs [120]. The process can be
inhibited by the TLR9 agonist, suggesting that targeting
TLR9 might be a potential therapeutic strategy. Exoso-
mal PKM2 derived from HCC cells induces metabolic
reprogramming in monocytes, phosphorylates STAT3
and upregulates differentiation-associated transcription
factors. These data showed that PKM2 could promote
monocyte-to-macrophage differentiation and remodel the
TME [17]. The development of small-molecule inhibitors
similar to PKM2 may prevent monocyte differentiation
into tumor-promoting macrophages. Although essential,
identifying tumor metabolites or vital glycolytic enzymes
in macrophages would be a complex and challenging task.
Lipid metabolic reprogramming in TAMs is indispens-

able for macrophage polarization and hepatocarcinogene-
sis. Downregulation of receptor-interacting protein kinase
3 (RIPK3) in TAMs reduced ROS levels and promoted fatty
acid metabolism via PPAR activation, contributing to the
accumulation and polarization ofM2 TAMs [18]. Fatty acid
oxidation (FAO) blockade reverses the immunosuppres-
sive activity of TAMs, which also appears to provide a
potential strategy for inhibiting tumor progression inHCC.
Several studies have provided mechanistic insights into

amino acid metabolism in TAMs, and most of these
studies have focused on how amino acid changes in
tumor cells affect TAMs. For instance, an amine oxi-
dase involved in extracellular matrix remodeling, lysyl
oxidase-like 4 (LOXL4), is upregulated during liver car-
cinogenesis in mice concomitantly fed a choline-deficient,
L-amino acid-defined diet. LOXL4 from neoplastic cells
may facilitate macrophage infiltration into the liver and
accelerate tumor growth. Glutamine metabolism is essen-
tial for macrophage activation, and α-ketoglutarate (Αkg)
production via glutaminolysis provides synergistic sup-
port for the activation [121]. Investigators in our hospital
demonstrated that solute carrier family 7 member 11
(SLC7A11) led to intratumoral TAMs and MDSCs accu-
mulation by increasing colony-stimulating factor-1 (CSF1)
expression through Αkghypoxia-inducible factor 1 subunit
alpha (HIF1α) cascade [15].
Tryptophan-derived microbial metabolites have been

reported tomediate anti-tumor immunity and activate aryl
hydrocarbon receptors in TAMs, suggesting a potential
therapeutic strategy [122]. How amino acid metabolism
in macrophages affects the direction of polarization and
tumor progression remains unclear; therefore, further
research is warranted.

In conclusion, extensive studies have been conducted
on glucose metabolism, lipid metabolism and amino acid
metabolism in TAMs. From the perspective ofmacrophage
metabolism, M1 macrophages are characterized by gly-
colytic metabolism, iNOS expression, and proinflamma-
tory cytokine production. The energy distribution of M2
macrophages is characterized by the increased expression
of genes related to improved glucose and fatty acid uptake,
transport, and oxidation. Modulating cellular metabolic
remodeling to facilitate tumor progression is a novel and
promising approach. Therefore, more reliable studies on
themetabolic properties, dependencies, and adaptations of
TAMs are warranted.

5.7 Liver cancer cells could polarize
TAM by affecting the mechanical
environment

Most hepatocarcinogenesis is based on fibrotic or cirrhotic
livers. Patients with HCC and severe cirrhosis usually
have a worse prognosis and shorter median survival times.
Increased liver stiffness plays a deleterious role in HCC
progression. In addition, the degree of matrix stiffness
is used to evaluate the histopathological characteristics
of HCC [123]. The results of most related studies have
shown that increased matrix stiffness can promote the
macrophage polarization to the M2 phenotype, and the
effects of biomechanical cues on HCC progression remain
largely unexplored. Research has shown that a 3D gel-like
microenvironment induces adhesion and differentiation of
monocytes viaMAPK-NF-κβ activation [124]. Activation of
the integrin β5-FAK-MEK1/2-ERK1/2 pathway facilitates
matrix stiffness-mediatedHIF-1α andLOXL2 expression in
polarizedmacrophages [125]. The high expression ofNogo-
B in TAMs of patients with HCC is closely correlated with
yes-associated protein 1(YAP)/ tafazzin (TAZ)-mediated
M2 polarization [126]. In summary, high matrix stiff-
ness promotes cancer cell proliferation and resistance
to chemotherapeutic agents, regulates angiogenesis, and
enhances stemness. The effect of M2 polarization on HCC
reflects the above processes. Thus, it is a very innovative
point to explore how matrix stiffness affects macrophage
polarization and functions, such as cytokine secretion and
phagocytosis.

6 SYNERGISTIC REGULATION
BETWEEN TAMs AND OTHER IMMUNE
CELLS

Communication betweenmacrophages and other immune
cells involves intricate exposure to different microenviron-
ments. TAMs express an array of effector molecules that
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F IGURE 5 TAMs coordinate with other immune cells in liver cancer. TAMs may be considered a double-edged sword in the immune
microenvironment of liver cancer. M2 macrophages and Tregs can secrete IL-10 to inhibit DCs, T cells and NK cells. They can also secrete
arginase and directly contact each other to inhibit the immune response. M1 macrophages can secrete IL-12 and CXCL10 to recruit more T
cells and NK cells, whereas CXCL9 derived from M1 macrophages can stimulate CD4+ T cells. B cells participate in anti-tumor-related
macrophage activities by secreting antibodies. Abbreviations: TAMs, tumor-associated macrophages; M1 TAMs, M1 type tumor-associated
macrophages; M2 TAMs, M2 type tumor-associated macrophages; HCC, hepatocellular carcinoma; NK cell, natural killer cell; IL-10,
interleukin 10; IL-12, interleukin 12; CCL5, C-C motif chemokine ligand 5; CCL20, C-C motif chemokine ligand 20; CCL22, C-C motif
chemokine ligand 22; TNF-α, tumor necrosis factor α; TGF-β, transforming growth factor-β; IFNγ, interferon-gamma; CXCL9, C-X-C motif
chemokine ligand 9; CXCL10, C-X-C motif chemokine ligand 10; PD-L1, programmed cell death protein 1 ligand 1; PD-1, programmed cell
death protein 1; CTLA-4, cytotoxic T-lymphocyte antigen 4; HLA-E, human leukocyte antigen E; HLA-G, human leukocyte antigen G; ILT2,
Ig-like transcript 2; FAS, factor-related apoptosis; FASL, factor-related apoptosis ligand

inhibit immune response in liver cancer. These immuno-
suppressing molecules include cytokines, chemokines,
enzymes and cell-surface receptors, which are mainly
ligands and receptors expressed by the target immune
effector cells (Figure 5).

6.1 TAMs and CD8+ T cells

6.1.1 TAMs interact with CD8+ T cells
through direct contact

TAMs can express HLA molecules, such as HLA-G and
HLA-E, to disable cytotoxic antitumor immune response

by interacting with the costimulatory T cells markers
Ig-like transcript 2 (ILT2) and CD94, respectively [127].
In addition to HLA molecules, macrophages can also
express ligands for the inhibitory receptors PD-1 and PD-
2, cytotoxic T-lymphocyte antigen 4 (CTLA-4), and T
cell immunoglobulin and mucin-containing molecule 3
(Tim-3) [128–130]. These inhibitory ligands induce T cell
apoptosis or functional inactivation. Selective CD28 block-
ade causes 2B4 upregulation in specific CD8+ T cells,
which can facilitate the control of antigen-specific CD8+ T
cell responses and functions [131]. Studies on livermetasta-
sis revealed that FasL+CD11b+F4/80+MoMϕs canmediate
apoptosis in activated antigen-specific Fas+CD8+ T cells
[132].
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In addition to the molecules mentioned above, many
undiscovered mechanisms can mediate direct interactions
betweenmacrophages and CD8+ T cells. Therefore, target-
ing surface markers between TAMs and CD8+ T cells is
a promising strategy for reversing the immunosuppressive
microenvironment in liver cancer treatment.

6.1.2 TAMs indirectly exacerbate CD8+ T
cells apoptosis and inhibit cytotoxic functions

Generally, macrophages are influenced by tumor cells
after entering the TME and are transformed into a state
that promotes tumor growth and inhibits T cell function.
Therefore, TAMs are one of the leading factors that induce
T-cell dysfunction.
The TME is typically a low-oxygen, low-glucose, and

high-lactate milieu due to uncontrolled cancer cell pro-
liferation and immune cell dysregulation. Some research
has revealed that HIF1α induces increased expression of
triggering receptor expressed on myeloid cells-1 (TREM-
1) in TAMs in a hypoxic HCC environment. Furthermore,
TREM-1+ TAMs induced CD8+ T cell apoptosis and
impaired cytotoxic functions by reducing the release of
granzyme B and perforin [133]. Intriguingly, this process
is independent of the PD-L1/PD-1 axis. In addition, TAMs
have been found to express arginase-1 and suppress the
function of activated (but not resting) CD8+ T cells [134].
These results indicated that TAMs could also release small
molecule secretions to indirectly repress CD8+ T cells.
TAMs are major immunosuppressive components in

liver cancer. Nevertheless, reprogramming of tumor-
surveillance phenotypes of macrophages can enhance
CD8+ T cell activity. For instance, a low dose of type-
I IFN can effectively reconstitute MoMϕs into CD169high
macrophages. These macrophages exhibited significantly
enhanced phagocytic and CD8+ T cell activation [135].
In a concurrent study, microRNA-206 facilitated the infil-
tration of CD8+ T cells by inducing M1 polarization
[20].
In conclusion, future research should explore

macrophage remodeling to prevent M2 TAMs from
affecting the infiltration of CD8+ T cells. Moreover,
attenuating the expression of PD-L1 on the surface of
macrophages is a significant strategy for CD8+ T cell accu-
mulation. [19]. However, the mechanism whereby TAMs
exacerbate CD8+ T cell suppression remains unclear.
Recently, a study on other cancers demonstrated that
the depletion of RNA N6-adenosine methyltransferase
in TAMs induced CD8+ T cell dysfunction [136]. Thus,
targeting molecules in TAMs that cause CD8+ T cell
suppression represents an attractive immunotherapeutic
strategy.

6.2 TAMs and regulatory T (Treg) cells
are mutual accomplices

Similar to TAMs, Treg cells are essential for maintain-
ing a suppressive immune microenvironment and con-
tributing to tumor immune escape. Previous findings
demonstrated that Tregs could mediate fatty acid syn-
thesis in M2 TAMs [137]. In addition, Tregs indirectly
but selectively maintain metabolic fitness, mitochondrial
integrity, and cell survival in M2-like TAMs. Treg cells
can mediate the metabolic remodeling of TAMs and influ-
ence the direction of macrophage polarization to promote
tumor progression [137]. In contrast, CCL5, CCL20, and
CCL22 derived from TAMs were responsible for Tregs
induction [138, 139]. In epithelial ovarian cancer, exo-
somes from TAMs, such as miR-29a-3p andmiR-21-5p, can
mediate the interaction between TAMs and T -cells by sup-
pressing the STAT3 signaling pathway [140]. Regardless
of the type of cancer, TAMs and Tregs act as accom-
plices to maintain an intratumoral immunosuppressive
microenvironment.
TAMs and Tregs can also cooperate to maintain the

immunosuppressive microenvironment [133]. Therefore,
while targeting TAMs, Tregs also seem to be affected. How-
ever, the current understanding is insufficient, and further
work in this area is merited.

6.3 TAMs and other immune cells

Tumor-infiltrating lymphocytes can secrete TNF-α and
IFNγ, which inhibit TAMs. In turn, IL-10 and TGF-β pro-
duced by M2 TAMs and Tregs are pivotal chemokines that
block the differentiation and maturation of T-cells, DCs
and CD4+ T cells [141, 142]. Cytokines secreted by M1
TAMs contribute to the infiltration and activation of CTLs,
NK cells, and CD4+ cells [143, 144]. The CSF1 receptor sig-
naling pathway mediates CD11b+Gr-1lowLy6Chigh MDSC
infiltration while recruiting CD11b+F4/80+ TAMs. There-
fore, TAMs and MDSCs usually appear together. Intrigu-
ingly, owing to the compensatory appearance of MDSCs,
the elimination of TAMs alone cannot inhibit tumor pro-
gression in iCCA [145]. As C-X-C motif chemokine ligand
2 (CXCL2) is a known chemoattractant for MDSCs, the
researchers observed significant upregulation of CAF-
derived CXCL2 in mouse liver cancer tumors when com-
pared with adjacent liver using the chemokine array and
quantitative polymerase chain reaction (PCR). Another
potential mechanism of TAM blockade–mediated MDSC
accumulation is due to their enhanced survival. A distinct
apolipoprotein E (ApoE) MDSC subset was uncovered
by single-cell RNA Sequencing (RNA-Seq) analysis. Both
TAMs and MDSCs are immunosuppressive cells in the
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F IGURE 6 Therapeutic strategies with TAMs in liver cancer. Targeting TAMs can be carried out from three perspectives: 1. Cutting off
the source and eliminating the production of M2 TAMs, including inhibiting the transition of monocytes to M2 TAMs and eliminating specific
pro-tumoral tissue-resident macrophages in liver cancer. 2. Remodeling M2 TAMs to M1 TAMs and CAR-M. 3. Blocking the communication
between M2 TAMs and liver cancer cells. Abbreviations: TAMs, tumor-associated macrophages; M1 TAMs, M1 type tumor-associated
macrophages; M2 TAMs, M2 type tumor-associated macrophages. CAR-M, chimeric antigen receptor macrophage; GEMys, genetically
engineered myeloid cells. IL12, interleukin 12

TME. Eliminating TAMs may lead to the compensatory
emergence of MDSCs. ApoE as well as cathepsin D
(ctsd) and cathepsin B (ctsb), which mediate MDSC death
via interrupted autophagy and endoplasmic reticulum
stress, were downregulated inMDSCs. Thus, ApoE agonist
GW3965 combined with TAMs blockade have tumor-
suppressive effects in the murine liver cancer model [145].
Moreover, RGX-104, an LXR/ApoE agonist, was shown
to significantly decrease MDSC levels in patients in a
phase I human clinical trial [146]. Therefore, the effective-
ness of such combinations of MDSCs blockade and TAMs
blockade in the treatment of human liver cancers requires
further evaluation.
In summary, M2 TAMs and other pro-tumorigenic

immune cells such as Tregs and MDSCs constitute the
main drivers of the immunosuppressive microenviron-
ment. They can directly or indirectly inhibit the function
of immune cells. In contrast, M1 TAMsmediate T cell infil-
tration and enhance tumor immunity by reshaping the
tumor immune microenvironment. Balance the interac-

tions of macrophages with other immune cell types is key
for treating malignant tumors.

7 EMERGING STRATEGIES FOR
TARGETING TAMs IN LIVER CANCER

Over the past decade, experimental and clinical research
results have indicated that the destruction or rediffer-
entiation of TAMs may be a viable therapeutic strategy
for patients with liver cancer [45, 147, 148]. We have
divided TAMs-related therapeutic strategies into three
approaches:1) cutting off the source and eliminating the
production of M2 TAMs, 2) remodeling M2 TAMs to
M1 TAMs, and 3) blocking communication between M2
TAMs and liver cancer cells (Figure 6). Furthermore, we
summarize the most cutting-edge research on these treat-
ment strategies and provide sufficient and robust evidence
to support promising strategies for limiting liver cancer
growth and progression (Table 2).
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TABLE 2 Preclinical agents and clinical trials targeting TAMs for HCC treatment

Treatment
strategy Drug name

Combinational
therapy

Cancer
type Results

Clinical trial
number or
Reference

Inhibiting the transition of monocytes to M2 TAMs
Blocking
CSF-1/CSF1R

Cabiralizumab Anti-PD1-mAb:
Nivolumab

HCC Clinical trial for HCC
patients(ongoing)

NCT04050462

Chiauranib N/A HCC Clinical trial for HCC
patients

NCT03245190

GW2580 or
AZD7507

N/A iCCA Inhibit iCCA growth in
xenografts model

[151]

Anti-CSF1R:AFS98 Anti-Ly6G:1A8
and anti-PD-1:
G4

iCCA Potentiate anti-PD-1
therapy and attenuate
iCCA progression

[145]

SNDX-6532 Durvalumab iCCA Clinical trial for iCCA
patients(ongoing)

NCT04301778

CCL2/CCR5
antagonist

BMS-813160 Anti-PD1-mAb:
Nivolumab

HCC Clinical trial for HCC
patients(ongoing)

NCT04123379

Cenicriviroc N/A HCC Reverse liver damage and
steatosis

[152]

CCR2 antagonist 747 Low-dose
sorafenib

HCC Anti-tumor and enhance
the efficacy of sorafenib

[154]

RDC018 N/A HCC Inhibit HCC growth and
metastasis

[153]

CCL2 antibody 2H5 N/A iCCA Downregulate
macrophage
accumulation and
suppress tumor growth

[114]

C/EBPα saRNA MTL-CEBPA Sorafenib HCC Clinical trial for HCC
patients (ongoing)

NCT02716012/
[155]

MTL-CEBPA Pembrolizumab HCC/
iCCA

Clinical trial for solid
tumor patients
(ongoing)

NCT04105335

CCL5 blockade aPKCɩ-siRNA Gemcitabine iCCA Inhibited TAM infiltration
and iCCA progression

[156]

Remodeling M2 TAMs to M1 TAMs
Tyrosine kinase
inhibitors

Sorafenib N/A HCC Inhibit tumor growth and
improve survival

[165]

Pan-PI3K inhibitor SF1126 Anti-PD1-mAb:
Nivolumab

HCC Clinical trial for HCC
patients

NCT03059147

PI3Kγ inhibitor TG100-115 Sorafenib HCC Higher levels of antitumor
efficiency

[170]

GSK2636771 N/A iCCA MATCH Screening Trial
for solid tumor
patients(ongoing)

NCT02465060

RIPK3 inhibitor GSK872 N/A HCC Dampened HCC
tumorigenesis

[18]

Natural compound Baicalin N/A HCC Suppress tumor
progression

[108]

CSF-1R inhibitor PLX3397 Anti-PD-L1 HCC Suppress tumor
progression

[167]

C-Met and EGFR
inhibitor

Norcantharidin N/A HCC Suppress tumor
progression

[169]

(Continues)
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TABLE 2 (Continued)

Treatment
strategy Drug name

Combinational
therapy

Cancer
type Results

Clinical trial
number or
Reference

Agonistic
anti-CD40

Clone FGK4.5 Anti-PD-1
antibodies:
Clone
29F.1A12

iCCA Increase the infiltration of
immune cells and
inhibit iCCA growth

[171]

Tie2 inhibitor Regorafenib N/A HCC Clinical trial for HCC
patients

NCT04476329

Regorafenib Nivolumab HCC Clinical trial for HCC
patients(ongoing)

NCT04170556

Regorafenib PD-1 inhibitor HCC Clinical trial for HCC
patients(ongoing)

NCT05048017

Regorafenib N/A HCC Improves overall survival
in HCC patients with
sorafenib treatment

[176]

TLR7 agonist RO7119929 Tocilizumab HCC/
iCCA

Clinical trial for
HCC/iCCA
patients(ongoing)

NCT04338685

GS-9620 Anti-SIGLEC-3
mAb

HCC Reducing the risk of HCC
in chronic hepatitis
patients

[172]

Eliminating specific pre-tumoral tissue-resident macrophages in liver cancer
Microtubule
polymerization
inhibitor

CA1P Sorafenib HCC Suppress tumor growth
and enhance the effect
of PD-1 sorafenib

[157]

Macrophage
depletion drug

Zoledronic acid Sorafenib HCC Suppress tumor growth
and enhance the effect
of PD-1 sorafenib

[158]

Lipclod N/A iCCA Deplete phagocytic
macrophages and
inhibit iCCA growth

[151]

Zoledronic acid Sorafenib HCC Clinical trial for HCC
patients(ongoing)

NCT01259193

Tyrosine kinase
inhibitors

Lenvatinib Anti-mouse
PD-1 antibody

HCC Suppress tumor growth
and enhance the effect
of PD-1 antibody

[159]

Antioxidant agent CeO2NPs N/A HCC Eliminating existent
TAMs and Suppress
tumor progression

[160]

Blocking the communication betweenM2 TAMs and liver cancer cells
A2A antagonist SCH58261 Anti-GM-CSF

antibodies
HCC Eliminating existent

TAMs and Suppress
tumor progression

[14]

CD47-SIRPα
blocking

Anti-human-SIRPα N/A HCC Clinical trial for HCC
patients

NCT02868255

Anti-CD47-Ab TACE or
Tocilizumab

HCC Suppress tumor growth
and enhance the effect
of TACE

[184]

Anti-CD47-Ab Doxorubicin HCC Suppress tumor growth
and enhance the effect
of doxorubicin

[187]

(Continues)
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TABLE 2 (Continued)

Treatment
strategy Drug name

Combinational
therapy

Cancer
type Results

Clinical trial
number or
Reference

CD47mAb400 N/A HCC Suppress tumor
progression

[188]

Anti-CD47-Ab B6H12.2 iCCA Promotes macrophage
phagocytosis and
suppress iCCA growth

[186]

CAR-M
CAR macrophages CT-0508 N/A HCC Clinical trial for Her2

overexpressing
patients(ongoing)

NCT04660929

Abbreviations: A2A, adenosine A2a receptor; CAR-M, chimeric antigen receptor macrophage; CCL2, C-C motif chemokine ligand 2; CCL5, C-C motif chemokine
ligand 5; CCR2, C-C motif chemokine receptor 2; CCR5, C-C motif chemokine receptor 5; C/EBPα, CCAAT/enhancer-binding protein alpha; CSF1, colony-
stimulating factor-1; CSF1R, colony-stimulating factor 1 receptor; EGFR, epidermal growth factor receptor; HCC, hepatocellular carcinoma; iCCA, intrahepatic
cholangiocarcinoma; IL6, interleukin 6; PD1, programmed cell death protein 1; PI3Kγ, Phosphoinositide 3-kinase gamma; RIPK3, receptor-interacting protein
kinase 3; saRNA, small activating RNA; SIGLEC-3, sialic acid binding Ig like lectin 3; SIRPα, signal regulatory protein alpha; TACE, transcatheter arterial
chemoembolization; TAMs, tumor-associated macrophages; TLR7, toll-like receptor 7.

7.1 Cutting off the source and
eliminating the production of M2 TAMs

7.1.1 Inhibiting the transition of monocytes
to M2 TAMs

Circulating monocytes are the primary source of infil-
trating macrophages in tumors, and the accessibility of
mononuclear cells in clinical practice (which enables a
treatment strategy based on blocking the source of mono-
cytes) is particularly significant. Blocking the CSF1/CSF1R
axis is the most established method of reducing TAM
survival [149]. This ligand-receptor pair is indispensable
for TAM differentiation and survival [150]. The CSFR1
inhibitors GW2580 and AZD7507 were shown to prevent
the recruitment of peripheral monocytes in iCCA [151].
TAM blockade alone does not inhibit tumor progression,
with a compensatory increase of granulocytic myeloid-
derived suppressor cells (G-MDSCs). Combined treatment
with antibodies against CSF1R and Ly6G or ApoE agonist
GW3965 could reduce tumor volumes and increase the
efficacy of anti-PD-1 in the YAP/AKT driven murine iCCA
model.
Along with the CSF1/CSF1R axis, a growing body of

evidence indicates that the CCL2/CCR2 axis-mediated
macrophage infiltration is a potential immunotherapeu-
tic target [152]. CCL2 derived from HSCs can promote
macrophage accumulation and modulate TAM polar-
ization. Blocking the CCL2/CCR2 axis with a CCR2
antagonist impaired the accumulation of blood inflam-
matory monocytes and suppressed murine liver tumor
growth [153]. Furthermore, a natural CCR2 antagonist,
747, could recruitmoreCD8+ cytotoxic T cells and enhance
the therapeutic effect of sorafenib by blocking tumor-

infiltrating macrophage-mediated immunosuppression
[154]. In cholangiocarcinoma, monocyte chemoattractant
protein-1(MCP-1, also known as CCL-2) directed the
trafficking of CCR2+monocytes to the tumor niche, and
an anti-MCP-1 antibody attenuated the aggregation of
circulating macrophages [114].
C/EPBα, a transcription factor, can enhance the func-

tion ofMDSCs andM2macrophages. In a phase I/Ibmulti-
center clinical study, C/EBPα saRNA (MTL-CEBPA) treat-
ment played an indispensable role in hampering aggrega-
tion and reversing the suppressive activities of MDSCs and
TAMs, and combination therapy with MTL-CEBPA and a
PD-1 antibody significantly abrogated tumor progression
[155].Moreover, some researchers have used 10XGenomics
single-cell RNA sequencing technologies to determine
that M2 TAMs infiltration was associated with iCCA pro-
gression and to measure the expression of macrophage
markers and aPKCɩ in 70 human tumor samples at various
stages. Furthermore, the study presented a novel combi-
nation therapy strategy with cationic liposome-mediated
co-delivery of gemcitabine and aPKCɩ-siRNA, which sig-
nificantly attenuated macrophage recruitment [156].
None of the antibodies and inhibitors above can selec-

tively act on M2 TAMs and affect the antitumor activity
of M1 TAMs. Therefore, M2-selective clearance antibodies
and inhibitors need to be developed in the future.

7.1.2 Eliminating specific pro-tumoral
tissue-resident macrophages in liver cancer

Specific pro-tumoral tissue-resident macrophages accu-
mulate close to tumor cells early during tumor formation
and provide a pro-tumorigenic niche and induce a potent
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regulatory T cell response that protects tumor cells from
adaptive immunity [10]. In liver cancer, KCs represent
the vast majority of tissue-resident macrophages. In the
presence of carcinogenic factors, these cells will gradually
transform into TAMs to promote cancer progression.
A previous report showed that combretastatin A-1 phos-

phate (CA1P), a microtubule polymerization inhibitor,
exerted remarkable antitumor activity against HCC cells
and TAMs. CA1P could induce TAM apoptosis by inhibit-
ing the Wnt/β-catenin pathway and down-regulating Treg
levels. The authors also indicated that combination ther-
apy with CA1P and sorafenib therapy was most likely
to achieve treatment effects in drug-resistant patients
[157]. Although emerging clinical evidence and preclini-
cal findings have revealed that sorafenib increases overall
survival and improves outcomes in patients with HCC,
macrophages may exert a pro-tumor role under sorafenib
treatment [22]. However, zoledronic acid combined with
sorafenib could significantly inhibit tumor progression in
two xenograft nude mouse models [158]. Other multi-
targeted kinase inhibitors, such as lenvatinib, have been
reported to decrease the tumor macrophage population
and increase the number of CD8+ cells [159]. That research
also indicated that combination treatment with lenvatinib
and an anti-PD-1 antibody notably enhanced antitumor
activity.
Recent research showed that treating rats with HCC

with cerium oxide nanoparticles (CeO2NPs) reduced
the macrophage infiltration into the liver, inhibited the
expression of inflammatory response-related genes, and
improved the survival of Wistar rats [160]. Moreover, the
macrophage scavenger liposomal clodronate (Lipclod) can
selectively inhibit Wnt signaling and the growth of iCCA
in bilateral xenografts of human cholangiocarcinoma cells
SNU-1079, CC-LP-1 or WITT1 [151].
Tissue-resident macrophages play a pivotal role in shap-

ing the liver tumor immune microenvironment, making
them a crucial target in the prevention and treatment of
early liver cancer lesions. Nonetheless, the lack of a com-
prehensive understanding of macrophage molecular and
functional diversitymakesmodulating themextremely dif-
ficult. Therefore, using single-cell sequencing to trace how
such TAM lineages contribute to the TME and liver cancer
progression should be explored in future research. [10, 59,
161, 162].

7.2 Remodeling M2 TAMs to M1 TAMs

Preclinical experimental data suggest that targeting
macrophage repolarization can be beneficial in cancer
immune therapy [163]. Sorafenib is a classic multik-
inase inhibitor approved for treating systemic HCC.

Recent data have shown that sorafenib inhibits the
macrophage-induced growth of hepatoma cells [164].
Sorafenib regulates the functions of M2 TAMs and ham-
pers HCC growth mediated by the insulin growth factor
(IGF)/insulin growth factor receptor (IGF-R) signaling
axis [165]. Further study on targeting macrophages with
sorafenib has shown that the multi-kinase inhibitors
stimulate proinflammatory cytokine production in
macrophages and activate hepatic NK cells in cytokine-
and NF-κB-dependent manners [166]; providing robust
evidence that tyrosine kinase inhibitors (TKIs) can be
used to reverse macrophage polarization and induce
anti-tumor immune responses.
RIPK3-mediated lipid metabolic reprogramming is cor-

related with tumorigenesis, macrophage accumulation,
and polarization in the tumormilieu. The RIPK3 inhibitor,
GSK872, or FAO blockade, was shown to remodel the
immune activity of TAMs and markedly abrogate tumor
progression [18]. A natural compound, baicalin, has been
reported to directly induce TAM reprogramming to M1-
like macrophages through autophagy-associated activa-
tion of Reticuloendotheliosis viral oncogene homolog
B (RelB)/p52. The authors demonstrated the tumor-
suppressive effect of baicalin in skewing macrophages
away from M2-like macrophages toward the M1-like phe-
notype for treating HCC [108]. Recently, it was reported
that blocking the CSF1/CSF1R signaling by PLX3397
reduced tumor growth and reduced M2 phenotype polar-
ization [167]. Targeting miRNAs could also be an effective
therapeutic strategy for regulating macrophage polar-
ization. MiR-98 may play a vital role in shifting the
polarization of TAMs towards the M1 phenotype [168].
Norcantharidin, a common anticancer drug, modulates
macrophage polarization through miR-214 to exert an
anti-HCC effect [169].
Phosphoinositide 3-kinase gamma (PI3Kγ) regulates the

immunosuppressive properties of TAMs. PI3Kγ inhibitors,
such as TG100-115, can induce the expression of MHC-
II and proinflammatory cytokines, skewing macrophages
to the M1 phenotype while reducing immunosuppressive
molecules and inhibiting tumor progression [170].
Multiple stages of the immune response are mediated

by the tumor necrosis factor superfamily (TNFSF) ligands
and their receptors, such as the CD40/CD40L pair. CD40
functions as a crucial communicationmedium connecting
innate and adaptive immunity and is a significant trigger
formonocyte to differentiate intoM1macrophages andDC
cells. The CD40-mediated activation of macrophages and
DCs in iCCA has been shown to ameliorate responses to
checkpoint inhibitors [171].
TLR can trigger the release of pro-inflammatory

cytokines in response to bacteria or viruses infection.
Intratumoral injection of TLR agonists can increase
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monocyte recruitment and infiltration and induce repolar-
ization, preventing TAM polarization to theM2 phenotype
[172, 173]. Clinical trials have also been conducted to study
the efficacy of TLR agonists, such as RO7119929, against
liver cancer.
The infiltration of pro-angiogenic TAMs that express

the angiopoietin receptor Tie2 could serve as a diag-
nostic marker for HCC [97]. Transient expression of a
dominant-negative Tie2 ectodomain (sTie2) can block
Ang2-mediated Tie2 signaling and may be a promising
approach for tumor treatment [174]. In addition, data from
a study of other cancers showed that Ang2-Binding and
Tie2-Activating Antibody (ABTAA) induced polarization
of TAM toward an anti-tumor phenotype and promoted
tumor vascular normalization more effectively than treat-
ment with Ang2-Blocking Antibody (ABA) alone. These
findings demonstrate that ABTAA is a promising thera-
peutic for inhibiting tumor growth and reorchestrating the
TME [175]. Regorafenib is an oral small-molecule TKI that
potently blocks multiple protein kinases. Interestingly,
Tie2 may be a tempting target for regorafenib. Preclinical
data and some clinical findings have confirmed that rego-
rafenib could effectively inhibit liver cancer progression
[176].

7.2.1 A novel cellular immunotherapy:
chimeric antigen receptor macrophage
(CAR-M) treatment

Clinical trials have significantly advanced cancer treat-
ment in adoptive cell therapy, such as chimeric antigen
receptor T cell (CAR-T) therapy, especially for hemato-
logic neoplasms. Recent clinical trials of CAR-M ther-
apy have opened up a new field for using macrophages
to treat solid tumors (Table 2). After modification via
genetic engineering technology, macrophages can target
specific antigens, such as CD19, CD22, and Her2, to rec-
ognize tumor cells [177]. CAR-M cells can phagocytize
tumor cells, secrete pro-inflammatory cytokines to change
the tumor immune microenvironment, present tumor
antigens to T cells and activate the immune response
[178]. Studies on solid tumors have revealed that highly
active CD3-based CARs on the surface of macrophages
can phagocytose and destroy targeted tumor cells in a
Syk-dependent manner instead of soluble opsonizing fac-
tors [177, 179]. Ad5f35, a chimeric adenoviral vector, can
induce a durable M1 phenotype after macrophage trans-
duction in humanized mouse models. Intriguingly, this
group of macrophages did not convert to M2 macrophages
upon stimulation with cytokines or a tumor-conditioned
medium, which confirmed that CAR-Ms could elicit an
inflammatory microenvironment, improve antitumor T

cell activity, and significantly abrogate solid tumor progres-
sion [177].
CAR-M technologies are constantly evolving. The tar-

gets recognized byCAR-Mare primarily expressed in other
cancer types. Nevertheless, due to the heterogeneity of
liver cancer, exploring liver tumor cell-specific targets and
engineering macrophages in liver TME remains challeng-
ing. It is also necessary to pay attention to the therapy’s
potential off-target toxicity and immunogenicity [180–182].
If the results of associated studies are to be translated into
clinical practice, safer, more reliable and efficient CAR-
M technologies should be developed. In addition, more
research is warranted to confirm whether CAR-M com-
bined with CAR-T, multi-targeted kinase inhibitors, and
ICIs can enhance tumor inhibitory effects.

7.3 Blocking the communication
betweenM2 TAMs and liver cancer cells

The relationships between tumor cells and macrophages
are diverse. Many of the relationships involve the modula-
tion of signaling pathways that contribute to homeostasis
in non-malignant organs. In addition, intervention with
M2 TAMs should not affect macrophages not associated
with malignancy. Mechanistic data have demonstrated
that tumor-derived adenosine, an ATP-AMP metabolite,
with autocrine GM-CSF can accelerate suppressive tumor-
infiltrating macrophage proliferation via the PI3K/AKT
pathway. Hence, using adenosine receptor antagonists or
anti-GM-CSF antibodies to inhibit macrophage accumu-
lation may be a novel immunotherapy strategy [14].
CD47 is an immunoglobulin-like protein known to inter-

act with its receptor on macrophages, SIRPα, and partici-
pates in phagocyte-mediated tumor clearance [183].CD47
expression is modulated by several mechanisms. For
instance, IL-6 secreted by TAMs can upregulate CD47
expression in hepatoma cells through the STAT3 pathway
[184]. Moreover, histone deacetylase 6 (HDAC6) mediates
thrombospondin-1 (TSP1) expression, and TSP1 binds the
CD47 receptor to block the CD47-SIRPα-mediated anti-
phagocytosis of the macrophage in a spontaneous mouse
HCC model [185]. Thus, blocking CD47-SIRPα signal-
ing is a potential strategy for enhancing the ability of
macrophages to phagocytose tumor cells and inducing
antitumor responses [184, 186-188].
Combination therapy of CD47 blockade and other tar-

get inhibitors presents new insights to improve HCC
treatment. Glypican-3 (GPC3) is a characteristic anti-
gen of hepatocellular carcinoma. Bispecific antibodies to
CD47 and Glypican-3 (GPC3) have more potent anti-
tumor effects and lower toxicity than monotherapy in
humanized mice [189]. Furthermore, a preclinical study
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showed that CD47 blockade with CD47 antibody is associ-
ated with a good prognosis. CD47-blocking increased the
time-to-progression of metastatic tumors and prolonged
survival in a murine splenic injection model of hepatic
micrometastatic pancreatic ductal adenocarcinoma [190].

8 CONCLUSION AND PERSPECTIVES

Over the past decades, extensive researchhas brought forth
the revolutionary idea that hepatic immune cell popula-
tions based on TAMs play central roles in initiating and
perpetuating liver cancer. In the specific immunemicroen-
vironment of hepatic neoplasms, TAMs serve functions
that differ from those in other organs, including the reg-
ulation of signal-transduction mechanisms, the change of
self-metabolism patterns in response to the context of the
internal environment, and the spectrum of secreted fac-
tors. Whether starting from the communication between
TAMs and cancer cells, the corresponding metabolic
changes, or the biological stress of TAMs themselves, there
seems to be more room for exploring the field of TAMs in
liver cancer. In clinical research, TAMs are closely related
to postoperative tumor progression and treatment. Experts
have concluded that the TAMs population is a signifi-
cant clinical prognostic indicator. Many clinical trials are
still exploratory and are in an early stage. Some studies,
such as using in vitro-cultured macrophages in patients
with advanced cancer (who have failed standard therapy)
have been conducted. After intravenous or intraperitoneal
injection of these cultured macrophages into 15 patients,
the disappearance of ascites and inflammatory reactions
occurred in individual patients. It is noteworthy that there
were no other adverse reactions except for low-grade fever
and abdominal discomfort. Although lacking significant
regression of the primary tumor site and clinical effi-
cacy, these studies provide valuable information for the
development of human macrophage-based therapies.
Although preclinical and clinical studies on TAMs have

provided encouraging results, the use of macrophages
as a targeted therapy for liver cancer still faces some
challenges. First, most TAM research has been limited
to animal models. There is considerable heterogeneity
between mouse models and humans in terms of patho-
genesis and responses to drug therapy. To facilitate the
introduction of TAMs applications in the clinical arena,
it is necessary to explore inhibitors targeting human
TAMs and the immune microenvironment in patients
with liver cancer. Second, due to the diversity of the
origin of macrophages and heterogeneity after differentia-
tion, TAMs show diverse characteristics at different stages.
It appears that using specific blocking agents, such as
CCL2 antibodies alone, is insufficient to overcome liver

malignancies. Additionally, pan-macrophage therapeutic
approaches may also have adverse effects, such as CSF1
blockade targeting all macrophages, leading to systemic
toxicity. Therefore, determining an optimal time for treat-
ment andmore precise therapeutic targets of TAMs during
ongoing treatment are tasks worth exploring. Third, the
checkpoint blockade on the surface of macrophages is cur-
rently limited to PD-L1. Several novel immune checkpoints
are expressed on the surface of macrophages, such as
SIRPα and Tim-3. Additional preclinical and clinical trials
are required to support other ICIs combined with clas-
sic therapies. Finally, eliminating TAMs seems to lead to
the compensatory emergence of other immunosuppressive
cells. Thus, TAM elimination would also need to compen-
sate for other immunosuppressive cells, such as Tregs and
MDSCs, which cause tolerance to targeted TAMs alone.
In this review,we have elaborated on the origin of TAMs,

the communication of TAMs with surrounding cells, and
the latest treatment progress, which providesmore options
and substantial evidence for treating patients with liver
cancer by targeting macrophages. In the future, pharma-
ceuticals targeting macrophages in the specific immune
environment of the liver as well as more stable, safe
and efficient immune combination therapy could facili-
tate the further development of immunotherapy for liver
cancer.
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