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Abstract
As one of the most studied ribonucleic acid (RNA) modifications in eukary-
otes, N6-methyladenosine (m6A) has been shown to play a predominant role in
controlling gene expression and influence physiological and pathological pro-
cesses such as oncogenesis and tumor progression. Writer and eraser proteins,
acting opposite to deposit and removem6A epigenetic marks, respectively, shape
the cellular m6A landscape, while reader proteins preferentially recognize m6A
modifications and mediate fate decision of the methylated RNAs, including
RNA synthesis, splicing, exportation, translation, and stability. Therefore, RNA
metabolism in cells is greatly influenced by these three classes of m6A regula-
tors. Aberrant expression of m6A regulators has been widely reported in various
types of cancer, leading to cancer initiation, progression, and drug resistance.
The close links between m6A and cancer shed light on the potential use of m6A
methylation and its regulators as prognostic biomarkers and drug targets for
cancer therapy. Given the notable effects of m6A in reversing chemoresistance
and enhancing immune therapy, it is a promising target for combined therapy.
Herein, we summarize the recent discoveries on m6A and its regulators, empha-
sizing their influences on RNA metabolism, their dysregulation and impacts in
diverse malignancies, and discuss the clinical implications of m6A modification
in cancer.

KEYWORDS
cancer therapy, chemoresistance, immunotherapy, m6A methylation, oncogenesis, prognostic
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1 BACKGROUND

Analogous to deoxyribonucleic acid (DNA) and protein,
RNA has more than 100 chemical modifications, which
tremendously propels our understanding on gene expres-
sion control [1]. Themost remarkable RNAmodification is
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N6-methyladenosine (m6A), methylated adenosine at the
N6 position, which was first discovered in the 1970s [2,
3]. Although m6A is one of the most abundant messen-
ger RNA (mRNA) modifications in mammals, its signif-
icance was not fully acknowledged until the identifica-
tion of fat mass and obesity-associated protein (FTO) as a
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F IGURE 1 The timeline of RNA epigenetics. m6A was first discovered in the 1970s. In 2011, FTO was identified as an m6A demethylase.
In 2012, the antibody-based transcriptome-wide sequencing method was developed to obtain m6A profiling in the human transcriptome. The
first FTO inhibitor was found in the same year. Association of m6A with cancer began to be reported in breast cancer and lung cancer in 2016,
and the cancer types expanded to AML, GBM, HCC, and pancreatic cancer in 2017. Up to now, m6A has been found to play critical roles in
most cancer types, and inhibitors against more m6A regulators are in development. Abbreviations: RNA, ribonucleic acid; m6A,
N6-methyladenosine; FTO, fat mass and obesity-associated protein; AML, acute myeloid leukemia; GBM, glioblastoma; HCC, hepatocellular
carcinoma

demethylase and the advent of transcriptome-wide m6A
mapping techniques that depicts the full scope ofm6A pro-
file (Figure 1) [4, 5]. Next-generation sequencing (NGS)
revealed that the distribution of m6A on mRNA is
widespread and not random. The consensus sequence
RRACH (R indicates guanosine (G) or adenosine (A),
while H indicates A, cytidine (C) or uridine (U)) and the
enrichment in certain regions (3’ untranslated region and
coding sequence) are common characteristics of the m6A
epitranscriptome [4, 5]. Owing to the high abundance and
reversible feature of m6A, more attention has been gained
to the wide-ranging regulation of m6A in physiological
and pathological processes, especially in oncogenesis and
tumor progression. Given the important roles of m6A in
cancer, we discuss the functions of m6A and its regula-
tors in RNAmetabolism control, their oncogenic or tumor-
suppressive roles in diverse malignancies, as well as the
potential application of m6A methylation in cancer diag-
nosis and therapeutics.

2 m6A AND ITS REGULATORS IN RNA
METABOLISM

The m6A modification is critical for RNA fate decision as
it can influence almost all aspects of RNA metabolism,
including synthesis (i.e. transcription), splicing, nuclear
exportation, translation, and degradation. In this section,
we summarize m6A regulators and their functions in RNA
metabolism (Figure 2 and Table 1).

2.1 m6A regulators

The m6A modification on mRNA is installed by the m6A
methyltransferase complex (MTC, also known as m6A
“writers”). A heterodimer consisting ofmethyltransferase-
like 3 (METTL3) and methyltransferase-like 14 (METTL14)
constitutes the core of MTC, in which METTL3 is the cat-
alytic subunit while METTL14 mediates substrate RNA
recognition and binding [6–9]. Other essential compo-
nents of the MTC complex, including Willms tumor 1
associated protein (WTAP), RNA Binding Motif Protein 15
(RBM15), RNA Binding Motif Protein 15B (RBM15B), Zinc
Finger CCCH-Type Containing 13 (ZC3H13), and Vir like
m6A methyltransferase associated (VIRMA), anchor MTC
to target RNAs [10–15].
The m6A modification is reversible and can be removed

by m6A demethylases (also known as m6A “erasers”).
As the first characterized RNA m6A demethylase, FTO
also has oxidative demethylation activity towards multi-
ple other types of DNA and RNA methylations, including
m3T, m3U, m6Am, and m1A [16, 17]. Nonetheless, m6A is
the major physiological substrate of FTO [16]. The alkB
homolog 5 (ALKBH5) is the second m6A eraser which
specifically demethylates RNA m6A [18].
The effect of m6A on gene expression is mediated by

the m6A binding proteins, also known as m6A “read-
ers”, which selectively interact with methylated RNAs
and affect RNA metabolism. There are three well-
known families of m6A readers, YT521-B homology (YTH)
domain family, insulin-like growth factor 2 mRNA-binding
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F IGURE 2 The functions of m6A and its machinery in RNA
metabolism. The m6A modification is installed by m6A
methyltransferases (Writers), consisting ofMETTL3/14,WTAP,
VIRMA, RBM15/15B, and ZC3H13, and is removed by RNA
demethylases (Erasers), including FTO and ALKBH5. The m6A
reader proteins, including YTHDF1/2, YTHDF1/2/3, IGF2BP1/2/3,
hnRNPA2B1/C/G, FMRP, Prrc2a andMETTL3, work with m6A to
participate in RNA synthesis, splicing, exportation, translation, and
degradation. Abbreviations: m6A, N6-methyladenosine; RNA,
ribonucleic acid; METTL3/14, methyltransferase-like 3/14; WTAP,
Willms tumor 1 associated protein; VIRMA, Vir like m6A
methyltransferase associated; RBM15/15B, RNA Binding Motif
Protein 15/15B; ZC3H13, Zinc Finger CCCH-Type Containing 13;
FTO, fat mass and obesity-associated protein; ALKBH5, alkB
homolog 5; YTHDF1/2/3, YTH domain-containing protein 1/2/3;
IGF2BP1/2/3, insulin-like growth factor 2 mRNA-binding protein
1/2/3; hnRNPA2B1/C/G, heterogeneous nuclear ribonucleoproteins
B1/C/G; FMRP, Fragile X mental retardation protein; Prrc2a,
Proline-Rich Coiled-Coil 2A; carRNAs, chromosome-associated
regulatory RNAs; Pol II, polymerase II; mRNAs, messenger RNAs;
eIF, eukaryotic translation initiation factor

proteins (IGF2BPs), and heterogeneous nuclear ribonu-
cleoproteins (HNRNPs) [19–22]. Members of the YTH
domain family, including YTH domain-containing protein
1 (YTHDC1), YTH domain-containing protein 2 (YTHDC2),

YTH domain-containing family protein 1 (YTHDF1), YTH
domain-containing family protein 2 (YTHDF2), and YTH
domain-containing family protein 3 (YTHDF3), have been
identified as direct m6A readers harboring m6A bind-
ing pockets [23–28]. YTHDC1 is localized in the nucleus
and regulates RNA splicing and nuclear exportation [23,
24] while cytoplasmic YTHDF1, YTHDF2, YTHDF3, and
YTHDC2 modulate RNA decay and translation coopera-
tively [25–28]. IGF2BPs, on the other hand, preferentially
recognize and bind tom6AmethylatedmRNAs to promote
their stability and translation [29]. Unlike these two fami-
lies of m6A readers, the HNRNP family members, includ-
ing heterogeneous nuclear ribonucleoprotein C (hnRNPC)
and heterogeneous nuclear ribonucleoprotein G (hnRNPG),
recognize their targets through an “m6A switch” mecha-
nism in which methylated A on the opposite side of a U-
tract alters the structure and accessibility of hairpin RNAs
[30, 31].
In short, writers and erasers work together to modulate

m6Adynamics andmaintain its homeostasis in cells, while
the activity of readers allows m6A to exert its influence in
each step of the RNA life cycle.

2.2 m6A-mediated precursor mRNA
(pre-mRNA) splicing

Splicing is a fundamental step of gene expression
regulation by removing introns and joining exons co-
transcriptionally. The alternative selection of exons
results in the production of multiple mRNA variants and
ultimately diverse protein products from a single gene,
contributing to proteome diversity. The influence of m6A
on alternative splicing was described by Dominissini et al.
[5] and was further supported by studies showing that
METTL3,WTAP, FTO andALKBH5 all modulated alterna-
tive splicing [10, 18, 32]. The m6A methylated pre-mRNAs
indeed undergo alternative splicing through the activity
of YTHDC1, heterogeneous nuclear ribonucleoproteins
A2/B1 (hnRNPA2B1), or an “m6A switch” mechanism. As
a founding member of the YTH domain family, YTHDC1
binds methylated pre-mRNAs and promotes exon inclu-
sion by recruiting splicing factor serine/arginine-rich
splicing factor 3 (SRSF3) and repelling serine/arginine-rich
splicing factor (SRSF10) [23]. Similarly, hnRNPA2B1 binds
to m6A-bearing RNA and modulates a subset ofMETTL3-
and m6A-mediated alternative splicing events [33]. In the
“m6A switch”mechanism,m6A affects RNA structure and
enhances the accessibility of hnRNPC and hnRNPG to the
flanking U-tract, while loss of m6A or hnRNPC/hnRNPG
can alter the splicing pattern of neighbor exons
[30, 31].
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2.3 m6A-mediated RNA nuclear
exportation

Fully spliced mRNAs are allowed to translocate from the
nucleus to the cytoplasm, which is under tight control. The
interaction of YTHDC1 and nuclear export adaptor protein
SRSF3 facilitates RNAbinding tonuclear RNAexport factor
1 (NXF1)which assists in nuclear translocation [24].Fragile
Xmental retardation protein (FMRP), also known as FMR1,
is also required for the Exportin 1 (XPO1)-mediated nuclear
export of methylatedmRNAs [34, 35]. The functional stud-
ies of these reader proteins support the earlier observation
that accumulation of polyadenylated (polyA) RNA in the
cytoplasm is associated with an increase in m6A methyla-
tion by ALKBH5 silencing [18], and the notion that m6A is
a determinant for the subcellular location of mRNAs.

2.4 m6A-modulated RNA stability

The steady level of mRNA is established by a balance
between its production and degradation, thus, the sta-
bility of mRNA is of great importance on modulating
mRNA metabolism and gene expression. Members of the
YTH domain family play a crucial role in controlling
mRNA turnover. As the first well-defined m6A reader,
YTHDF2 mediates the instability of the transcriptome in
an m6A dependent manner [25]. The C-terminal domain
of YTHDF2 selectively binds m6A-marked RNA while the
N-terminal domain mediates the anchoring of YTHDF2-
bound mRNA to RNA degradation site and the recruit-
ment of carbon catabolite repression-negative on TATA-less
(CCR4-NOT) deadenylase complex, leading to the short-
ening of mRNA half-life [25, 36]. Interestingly, a coordi-
nated functional interaction among YTHDF proteins was
reported, in which YTHDF3 could affect decay and trans-
lation of m6A-modified RNA with combined efforts of
YTHDF2 and YTHDF1, respectively [27]. YTHDC2 also
plays an essential role in the translation and decay of
methylatedmRNA [37]. Considering the above-mentioned
m6A readers that mediate RNA degradation, mRNAs with
declined m6A modification are supposed to be more sta-
ble. However, the opposite phenomenon was observed
in a portion of mRNAs, especially for the transcripts of
some oncogenes, suggesting an alternative mechanism of
m6A-dependent regulation on RNA half-life. Before long,
IGF2BP family proteins were identified as a new class of
m6A readers that enhance mRNA stability by interacting
with mRNA stabilizers, such as ELAV like RNA binding
protein 1 (ELAVL1, also known as huR), poly(a) binding pro-
tein cytoplasmic 1 (PABPC1) and Matrin 3 (MATR3), and
thereby, influencing gene expression [29]. In addition to

IGF2BPs,FMRP andProline-RichCoiled-Coil 2A (PRRC2A)
have been reported to bind to m6A marked mRNAs and
play a role in maintaining mRNA stability, further demon-
strating that m6A could function as a double-edged sword
in controlling mRNA half-life [29, 38-40].

2.5 m6A-mediated RNA translation

Protein translation, a process in which the genetic codes
are translated into amino acid sequences, is also tightly
controlled. m6A has been widely reported to be involved
in translation regulation. In the canonical cap-dependent
translation, YTHDF1 facilitates cap-dependent ribosome
recruitment to mRNA by forming a loop structure medi-
ated by eukaryotic translation initiation factor 4G (eIF4G)
and the interaction of YTHDF1 with eukaryotic trans-
lation initiation factor 3 (eIF3) [26]. YTHDF3 was later
proven to have a coordinated translation-promoting func-
tion with YTHDF1 [27, 28]. In addition, both IGF2BP pro-
teins and YTHDC2 couple active translation with the pre-
vention of mRNA decay [29, 37]. Notably,METTL3 plays a
methyltransferase-independent function to promote trans-
lation by interacting with eukaryotic translation initiation
factor 3h (eIF3h) and forming mRNA loop machinery [41,
42]. It was also reported that m6A in 5′ untranslated region
(5’UTR) of mRNAs or the body of circular RNAs (cir-
cRNAs) could promote translation in a cap-independent
manner [43, 44].

2.6 m6A-associated RNA synthesis

Although it was thought that m6A mainly affects gene
expression post-transcriptionally, emerging evidence has
shown that m6A carries a lot of weight in transcrip-
tional control. Liu et al. [45] reported that METTL3
methylated chromosome-associated regulatory RNAs (car-
RNAs), while YTHDC1 mediated the nuclear degradation
of the methylated carRNAs. Loss of m6A methylation via
Mettl3 knockout in mouse embryonic stem cells increased
carRNAs levels and therefore facilitated chromatin acces-
sibility and transcription activity [45]. Moreover, m6A on
mRNAs could facilitate the open state of correspond-
ing chromatin regions through YTHDC1-mediated recruit-
ment of histone H3 lysine 9 dimethylation (H3K9me2)
demethylase lysine demethylase 3B (KDM3B), leading to the
removal of the repressive H3K9me2 histone mark and the
promotion of transcription [46].
In summary, m6A methylation has been widely asso-

ciated with every aspect of RNA metabolism and gene
expression regulation, attributing to the extensive research
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F IGURE 3 The roles of m6A regulators on tumorigenesis. The proteins promoting tumorigenesis are in red, the ones with
tumor-suppressive roles are in blue, while the ones with controversial function are in orange. Abbreviations: m6A, N6-methyladenosine.
METTL3/14, methyltransferase-like 3/14; YTHDF1/2/3 YTH domain-containing protein 1/2/3; IGF2BP1/2/3, insulin-like growth factor 2
mRNA-binding protein 1/2/3; FTO, fat mass and obesity-associated protein; ALKBH5, alkB homolog 5; WTAP, Willms tumor 1 associated
protein; VIRMA, Vir like m6A methyltransferase associated

on the identification of m6A regulators and the explo-
ration of their functions. We have been updated by rapidly
expanding research in this field. For instance, the three
homologs of YTHDF, YTHDF1, YTHDF2 and YTHDF3,
were deemed to play distinct roles in controlling RNA
decay and translation [25–28]. However, a similar function
of these three proteins on RNA decay and the compensa-
tion effect among them have been revealed very recently
in certain cell contexts and bioprocesses, such as the ovar-
ian development of zebrafish and the early development
of mice [47–49]. Fully studying the interaction network
of m6A regulators, including YTHDF proteins and oth-
ers, under different contexts will give us a comprehen-
sive insight into the effects of m6A modification on RNA
metabolism.

3 ABERRANTm6AMETHYLATION IN
HUMAN CANCERS

Given the importance of m6A in controlling RNA
metabolism, aberrant methylation usually causes dys-
regulation of gene expression, including activation of
oncogenes and repression of tumor suppressors, which
plays fundamental roles in the initiation, development,
and progression of various cancer types (Figure 3 and
Table 2).

3.1 Acute myeloid leukemia

Acute myeloid leukemia (AML) is known for its devastat-
ing outcome and low 5-year overall survival rate (<40%) in
patients aged under 60 years old. It is originated from a dis-
ordered clone of hematopoietic stem and progenitor cells

(HSPCs), leading to the blockage of myeloid differentia-
tion and the production of leukemic stem cells (LSCs) with
self-renewal capacity that dominates the initiation of AML
and the development of drug resistance [50]. The impact of
FTO onAMLwhen first discovered linkedm6ARNAmod-
ification to AML [51]. Specifically, the overexpression of
FTO promoted oncofusion proteins-induced leukemogen-
esis through the demethylation of ankyrin repeat and socs
box containing 2 (ASB2) and retinoic acid receptor alpha
(RARA)mRNA transcripts [51]. The oncogenic function of
FTO could be selectively inhibited byR-2-hydroxyglutarate
(R-2HG) in isocitrate dehydrogenase (IDH) wild-type AML
cells or by smallmolecular inhibitors FB23-2 andCS1/2 in a
broad panel of AML cells [52, 53], resulting in the suppres-
sion of cell growth, LSC maintenance and immune eva-
sion [52, 54]. Another m6A demethylase ALKBH5was also
recently found to play oncogenic roles in AML through the
KDM4C (lysine demethylase 4C)- ALKBH5-AXL (tyrosine-
protein kinase receptor UFO) and ALKBH5-m6A-TACC3
(transforming acidic coiled-coil containing protein 3) axes
[55, 56].
On the other hand, the m6A methyltransferase machin-

ery has also been linked to AML. Barbieri et al. [57]
reported that METTL3 was recruited to transcriptional
start sites by CCAAT enhancer-binding protein zeta
(CEBPZ), thus, promoted m6A deposition in the coding
region and enhanced the translation of associated mRNA
transcripts which helped to maintain leukemic state.
Depletion of METTL3 in AML cells restrained translation
of c-MYC, B-cell lymphoma 2 (BCL2), and phosphatase
and tensin homolog (PTEN) through m6A-mediated
effects, leading to accelerated cell differentiation and
apoptosis coupled with lower proliferative ability [58].
As another core component of the MTC, METTL14
also plays a critical role in leukemogenesis. The m6A
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modification and stability of transcriptional activator Myb
(MYB) and MYC transcripts are under tight control by
the SPI1 (transcription factor PU.1)-METTL14 axis during
normal hematopoiesis, while elevated expression of
METTL14 leads to myeloid malignancy and enhanced self-
renewal capacity of leukemia stem cells by m6A-mediated
stabilization ofMYB andMYC oncogenic transcripts [59].
Apart from m6A erasers and writers, the relationship

between an m6A reader, YTHDF2, and leukemogenesis
has also been uncovered. Paris et al. [60] reported that a
decrease in Ythdf2 resulted in higher stability of the tumor
necrosis factor receptor superfamily member 2 (Tnfrsf2) and
more apoptosis of LSCs. They further found that depletion
of YTHDF2 could promote hematopoietic stem cell (HSC)
expansion, making YTHDF2 an additional promising anti-
leukemia target. Although m6A writers, erasers and read-
ers are clearly associated with AML, how these regulators
cooperate in the network is to be elucidated.

3.2 Liver cancer

As the sixth commonly diagnosed cancer, liver carcinoma
is the fourth cause of tumor-associated death globally
[61]. The current existing challenge of liver cancer lies in
the detection of late-stage disease, recurrence, and distant
metastasis. Therefore, growing efforts are being made to
further understand the underlying mechanisms of liver
cancer development and progression from various aspects,
including RNA epigenetics.
By examination of m6A level in paired tumor and adja-

cent tissues, Ma et al. [62] found that m6A levels of polyA
RNAs were decreased in hepatocellular carcinoma (HCC),
the most common type of primary liver cancer. Further,
they found that downregulation of METTL14 was associ-
ated with metastasis and could serve as a prognostic factor
in HCC.Mechanistically,METTL14 could interact with the
primarymicroRNA (miRNA) processing proteinmicropro-
cessor complex subunit DGCR8 (DGCR8) and regulate pri-
mary miRNA-126 processing in an m6A-dependent man-
ner [62]. In contrast,METTL3 is highly expressed in HCC
and promotes HCC tumorigenicity and progression by reg-
ulating the suppressor of cytokine signaling 2 (SOCS2) and
Snail family transcriptional repressor 1 (Snail1) mRNAs
homeostasis [63, 64]. In addition to mRNA, the dysregu-
lation of RNA methylation on the long non-coding RNAs
(lncRNAs) also contributes to the oncogenic function
of METTL3. An HCC specific lncRNA, LINC00958, was
stabilized by METTL3-mediated m6A modification and
was found to facilitate HCC lipogenesis and progression
through the sponging of miRNA-3619-5p, and thus upreg-
ulated hepatoma-derived growth factor (HDGF) expression
[64]. A nanoplatform delivering LINC00958 small inter-
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fering RNA (siRNA) was then developed for anti-HCC
purposes [64]. As regulatory components of MTC, WTAP
guides HuR-mediated ETS Proto-Oncogene 1 (ETS1) insta-
bility in anm6A-dependent pattern [65]whileVIRMA (also
named KIAA1429) mediates the installation of m6A on the
mRNA ofDNA-binding protein inhibitor ID-2 (ID2) and the
antisense lncRNA of GATA binding protein 3 (GATA3) [66,
67], thereby contributing to liver cancer development.
Besides MTC, the functions of other m6A modula-

tors have been revealed in liver cancer as well. Declined
ALKBH5 caused more m6A on LY6/PLAUR domain con-
taining 1 (LYPD1), and the latter was recognized and sta-
bilized by IGF2BP1, resulting in a more malignant HCC
phenotype [68]. Sirtuin 1 (SIRT1)-induced FTO SUMOy-
lation (small ubiquitin-related modifier, SUMO) leads to
the degradation of FTO protein, alleviating FTO-mediated
G protein subunit alpha O1 (GNAO1) demethylation and
increasing its expression, which has been shown to pro-
mote hepatocarcinogenesis [69].
Controversial roles of YTHDF2 have been reported in

HCC. Yang et al. [70] reported that YTHDF2 was essential
for HCC cell survival. By contrast, Hou et al. [71] reported
that low expression of YTHDF2 could provoke inflam-
mation, vascular reconstruction, and metastatic progres-
sion in HCC. This function could be blocked by hypoxia-
inducible factor (HIF)-2α, revealing a molecular ‘rheo-
stat’ role of YTHDF2 in the epitranscriptome and HCC
progression [71]. Coincidentally, Zhong et al. [72] found
YTHDF2 could suppress HCC cell proliferation by destabi-
lizing the epidermal growth factor receptor (EGFR) mRNA
andwas inhibited by the hypoxia environment ofHCC. For
YTHDF1, its function in promoting the translation of Snail
mRNA and driving epithelial-to-mesenchymal transition
(EMT) seems to be consistent with the poor prognosis
associated with its high expression level in HCC patients
[63, 73]. The role of another reader protein, IGF2BP1, was
also described in HCC, where IGF2BP1 protected serum
response factor (SRF)mRNA frommiRNA-mediated decay
in an m6A dependent manner, supporting IGF2BPs as
oncogenic drivers in cancer [29, 74]. Overall, the above-
mentioned research lay the foundation for treating liver
cancer from the RNA epigenetics view.

3.3 Gastrointestinal carcinoma

Gastric cancer is the fifth most-diagnosed neoplasm glob-
ally, with approximately 1 million patients being newly
diagnosed each year [75]. Considering its rapid progres-
sion and tendency to metastasis, scientists have been try-
ing to find out intrinsic mechanisms of gastric cancer,
and progress has been made in revealing the relationship
between m6A regulators and the metastatic property of

gastric cancer. For instance,METTL3 installs m6A on zinc
finger MYM-type containing 1 (ZMYM1) to increase its sta-
bility, and ZMYM1 recruits the C-terminal-binding protein
(CtBP)/ lysine-specific histone demethylase 1 (LSD1)/ REST
corepressor 1 (CoREST) complex to repressE-cadherin (also
named cadherin-1, CDH1) transcription, thus strengthen-
ing the EMT program and metastasis [76]. The activa-
tion of METTL3 transcription increases m6A modifica-
tion onHDGFmRNA, facilitating the binding of IGF2BP3.
Both of the secreted and nuclear HDGF contribute to gas-
tric tumorigenesis and development [77]. The oncogenic
role of METTL3 in gastric cancer was also demonstrated
by other researchers [78–81]. METTL14, in contrast, has
a tumor-suppressive function, and the knockdown of it
activates the Wnt/ PI3K (phosphoinositide 3 kinase)- Akt
(protein kinase B) signaling to promote tumor progression
[82]. Other m6A-related proteins, including IGF2BP3 and
ALKBH5, are both shown to play oncogenic roles in the
development of gastric carcinoma [77, 83].
Pancreatic cancer has the lowest survival rate (9%)

among all cancer types [84, 85]. Providing insights into the
development of pancreatic cancer from the aspect of RNA
epigenetics is also of great significance. Three studies sug-
gested a tumor-suppressive role of ALKBH5 in pancreatic
cancer. He et al. [86] reported that ALKBH5 inhibited pan-
creatic cancer motility by regulating the m6A level of anti-
sense RNA 1 of KCNK15 (KCNK15-AS1) lncRNA. Tang et al.
[87] found that ALKBH5 was downregulated in pancreatic
ductal adenocarcinoma (PDAC) cells and its overexpres-
sion sensitized cells to chemotherapy, withWnt inhibitory
factor 1 (WIF-1) being identified as the target of ALKBH5.
Recently, another research demonstrated thatALKBH5 led
to demethylation of period circadian regulator 1 (PER1)
mRNA and lifted PER1 level in a YTHDF2-dependent
manner, thereby reactivating the ATM (A-T mutated)-
CHK2 (serine/threonine-protein kinase)-P53 (tumor protein
53)/CDC25C (cell division cycle 25C) pathway [88]. In con-
trast to ALKBH5, other m6A regulators, including FTO,
METTL3,YTHDF2 and IGF2BP2, were all shown to exhibit
oncogenic roles in pancreatic cancer by promoting cell pro-
liferation, EMT, invasion, or chemo- and radio-resistance
[89–93].
As one of themost common types of carcinoma, colorec-

tal cancer (CRC) is known for its increasing incidence glob-
ally [61]. m6A modification has been found to be involved
in the pathogenesis of CRC in recent years. Reduction
of METTL14 was found to be correlated with unfavor-
able prognosis of CRC patients. Mechanistically, less m6A
modification on the oncogenic lncRNA (X inactive specific
transcript) XIST or SRY-box transcription factor 4 (SOX4)
mRNA due to low level of METTL14 inhibited YTHDF2
binding, preventing the decay of XIST or SOX4, and result-
ing in the malignant phenotype [94, 95]. In addition, the
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processing of primary miRNA-375 was inhibited in CRC
with decreased expression ofMETTL14, which contributed
to CRC progression [96]. Interestingly, the demethyla-
tion of histone H3 lysine 4 trimethylation (H3K4me3)
on the METTL14 promoter is responsible for the repres-
sion of METTL14 transcription in CRC [95]. In contrast,
METTL3 generally contributes to tumor development in
CRC [97, 98]. For example, METTL3 was reported to have
not only stemness-inducing function but also tumorigen-
esis and metastasis-promoting activity in CRC [98]. SRY-
box transcription factor 2 (SOX2), the downstream target
of METTL3, was recognized and stabilized by IGF2BP2 in
an m6A dependent manner [98]. In terms of m6A readers,
YTHDF1 was regulated byMYC and promoted CRC devel-
opment [99, 100], while YTHDF3, a well-known target of
Yes-associated protein (YAP), formed a feedback loop by
mediating the degradation of lncRNA growth arrest specific
5 (GAS5). The latter could facilitate YAP nuclear transloca-
tion, phosphorylation, and ubiquitin-dependent decay in
CRC [101]. In addition, long intergenic noncoding RNA for
IGF2BP2 stability (LINRIS)was found able to inhibit ubiq-
uitination of IGF2BP2 at lysine 139 and prevent its degrada-
tion via the autophagy-lysosome pathway, thus promoting
tumorigenesis through the LINRIS-IGF2BP2-MYC axis in
CRC [102].

3.4 Glioblastoma

Glioblastoma (GBM) is a type of commonly occurred
and aggressive brain tumor, in which m6A modification
has been demonstrated to play a role as well [103, 104].
METTL3 is a predictive prognostic marker in GBM and
plays a role in glioma stem-like cells (GSCs) maintenance
by depositing m6A modification in the SOX2 3’ untrans-
lated region (3’UTR) region and leading to the overex-
pression of SOX2 [105]. Consistently, Li et al. [106] found
that elevated expression of METTL3 correlated with the
clinical aggressiveness of malignant gliomas. m6A mod-
ification of the splicing factor serine/arginine-rich splic-
ing factor (SRSF) decreased upon METTL3 knockdown,
leading to YTHDC1-dependent nonsense-mediatedmRNA
decay of the SRSF transcripts and alternative splicing iso-
form switches in glioblastoma [106]. However, an opposite
role of METTL3 in GBM has also been reported, in which
METTL3 andMETTL14were considered as tumor suppres-
sors by targeting metallopeptidase domain 19 (ADAM19),
suggesting more in-depth studies are remained to be done
[107]. High forkhead box M1 (FOXM1) level caused by
ALKBH5-induced m6A reduction on FOXM1 mRNA con-
tributes to GSC and tumorigenesis, while antisense RNA
of FOXM1 (FOXM1-AS) enhances the binding of ALKBH5
and FOXM1 [108]. More recently, Dixit et al. [109] reported

a dependency of GSCs on YTHDF2, which surprisingly
stabilized MYC and vascular endothelial growth factor A
(VEGFA) transcripts in an m6A-dependent manner, dis-
tinct from the well-recognized role of YTHDF2 in mediat-
ing mRNA decay.

3.5 Breast cancer

As a highly heterogeneous neoplasm, breast cancer is the
second cause of tumor-associated death for women glob-
ally [110]. A positive feedback loop of HBXIP (Hepatitis B
X-interacting protein)/let-7g (lethal-7g)/METTL3/HBXIP,
in which m6A modification was involved in gene expres-
sion regulation, was demonstrated to drive the aggres-
siveness of breast cancer [111]. In another study [112], the
depletion of METTL3 induced adenylate kinase 4 (AK4)
overexpression, reactive oxygen species (ROS) reduction,
and less resistance of MCF-7 cells to tamoxifen.METTL14
and ALKBH5 were shown to promote breast cancer
growth and invasion by regulating m6A levels of key EMT
and angiogenesis-associated transcripts. Interestingly, the
authors reported that METTL14 and ALKBH5 controlled
each other’s expression and inhibitedYTHDF3, and the lat-
ter could in turn block RNA demethylase activity, form-
ing a writer-eraser-reader collaborative loop [113]. The role
of ALKBH5 in breast cancer has also been reported by
other groups [114–116]. Notably, Zhang et al. [114, 116]
found that the expression of ALKBH5 could be stimulated
by HIF-1α and HIF-2α upon exposure to hypoxia, which
increased breast cancer stem cells by reducing m6A modi-
fication onNANOGmRNA and increasedNANOG protein
level. Similar to ALKBH5, FTO also promotes breast can-
cer progression, with BCL2 interacting protein 3 (BNIP3)
and miR-181b-3p being identified as targets of FTO [117,
118]. In addition, Chang et al. [119] revealed the involve-
ment of YTHFD3-mediated epitranscriptomic regulation
in breast cancer brain metastasis. YTHDF3 overexpres-
sion was able to promote the translation of m6A-modified
ST6 N-acetylgalactosaminide alpha-2,6-sialyltransferase 5
(ST6GALNAC5), gap junction protein alpha 1 (GJA1), and
EGFR, which are related to brain metastasisFurther, they
found that the overexpression of YTHDF3 was the com-
bined consequence of increased gene copy number and the
autoregulation ofYTHDF3 cap-independent translation by
binding to m6A residues within its own 5’UTR.

3.6 Other cancers

Although advanced detection techniques and combined
treatment have been used, lung carcinoma, especially
non-small cell lung cancer (NSCLC), is still the main
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cause of cancer-associated death globally [61]. Most of the
m6A modulators, including METTL3 [41, 42, 120], FTO
[121, 122], ALKBH5 [123–125], YTHDF1 [126] and YTHDF2
[127], were demonstrated to be oncogenic in NSCLC,
a main subtype accounted for 80%-85% of lung cancer.
It’s worth mentioning that the oncogenic function of
METTL3 is attributed to its methyltransferase-dependent
and -independent activities, suggested by recent stud-
ies [41, 42, 120]. As a writer, METTL3 installs m6A on
mRNAs, such as YAP, and lncRNAs, such as metastasis-
associated lung adenocarcinoma transcript 1 (MALAT1),
and promotes the invasion and metastasis of NSCLC
via the activation of the YAP pathway [120]. On the
other hand, METTL3 functions like a reader to recog-
nize m6A-modified mRNAs and promote the production
of oncoproteins, such as EGFR, tafazzin (TAZ), mitogen-
activated protein kinase 2 (MAPK2),DNAmethyltransferase
3A (DNMT3A), and bromodomain-containing protein 4
(BRD4) [41, 42]. Whether the oncogenic roles of METTL3
rely on its writer or reader activity in other cancer types is
unclear and needs to be elucidated. In contrast toMETTL3,
ALKBH5 inhibits tumor growth and metastasis by lessen-
ing YAP level in a YTHDFs dependent manner and impair-
ing YAP function with the help of the miRNA-107/LATS2
(large tumor suppressor kinase 2) axis in lung cancer [125].
Diffuse large B-cell lymphoma (DLBCL) is a subtype

of lymphoid malignancy with heterogenous characteris-
tics in clinical manifestation, pathology, and biology [128].
METTL3 was found to be upregulated in DLBCL tissues
and promoted DLBCL progression by depositing m6A
methylation on pigment epithelium-derived factor (PEDF)
transcript, though the detailed mechanism needs to be
further studied [129]. A PIWI-interacting RNA (piRNA),
piRNA-30473, was illustrated to have oncogenic activity in
DLBCL through an m6A-dependent manner [130]. Fur-
ther, it was found that piRNA-30473 could increaseWTAP
level, which facilitated m6Amodifications on downstream
targets, such as hexokinase 2 (HK2).
Ovarian cancer and endometrial cancer are highly

aggressive gynecologic cancers [131, 132]. m6A regulators,
including ALKBH5 [133],METTL3 [134], IGF2BP1 [74] and
YTHDF1 [135], were suggested to be critical factors in pro-
moting ovarian cancer. For instance, multi-omics analysis
has been used to explore the crucial component of m6A-
related modulators in ovarian cancer and identified a sub-
unit of eIF3, eIF3C, as a direct YTHDF1 target [135]. Inter-
estingly, the protein but not the RNA level of eIF3C was
increased and positively correlatedwith the protein level of
YTHDF1 in ovarian cancer patients, suggesting that modi-
fication of eIF3CmRNA could be more relevant to its role
in cancer. Up to 70% of endometrial cancers exhibitedm6A
hypomethylation, possibly attributed to either a hotspot
R298P (R is arginine, P is proline) mutation inMETTL14 or

a decline ofMETTL3 level [136]. The changes of these two
key m6A modulators advanced endometrial tumor devel-
opment via the AKT pathway.
Overall, dysregulation of m6Amodifiers in cancer is fre-

quently observed and plays crucial roles in cancer initia-
tion, development, and drug resistance, through modulat-
ing/recognizing m6A on critical target transcripts.

4 FACTORS AFFECTINGm6A IN
CANCER

There is no doubt that m6A regulators dominate the layer
of epitranscriptomic regulation; nonetheless, internal or
external factors are able to regulate m6A incorporation in
different contexts, especially in cancer. Here, we sum up
factors that have an impact on m6A in cancer.

4.1 Genetic and epigenetic factors

Noncoding RNAs (ncRNAs) are a kind of RNA tradition-
ally regarded as molecules that are not translated but
have regulatory activities in gene expression. Accumulat-
ing data have shown that m6A methylation affects the
production and/or functions of ncRNAs, including lncR-
NAs, circular RNAs, and miRNAs [12, 30, 44, 64, 94, 137-
140]. On the other hand, ncRNAs also play a role in
m6A-mediated gene expression regulation. For instance,
ALKBH5 acted as an oncogene in GSCs by demethylating
FOXM1 mRNA. Interestingly, this process was strength-
ened by FOXM1-AS, a lncRNA antisense to FOXM1 [108].
The discovery of FOXM1-AS as a pivotal modulator in
ALKBH5-dependent GSC proliferation emphasizes the
role of ncRNA in GSC. RNA-binding regulatory peptide
(RBRP) is a peptide encoded by lncRNA LINC00266-1, and
its interaction with the m6A reader IGF2BP1 intensified
the function of IGF2BP1, thus, reinforced the expression
of MYC and the process of tumorigenesis. More impor-
tantly, higher RBRP level in patients was associated with
shorter overall survival, confirming its oncogenic effect
and the potential applications as a therapeutic target in
treating cancers [141]. In colorectal cancer, the inhibition of
miRNA-455-3p rescued β-catenin depletion-induced reduc-
tion of heat shock transcription factor 1 (HSF1)m6Amodifi-
cation andMETTL3 interaction [142]. Taken together, ncR-
NAs exist as critical modulators of m6A-dependent gene
expression control, and more of their regulatory roles and
mechanisms remain to be explored.
The RNA methylation also has crosstalk with histone

modifications. To be specific, m6A peaks are enriched
in the region of histone H3 lysine 36 trimethylation
(H3K36me3) and are declined with the reduction of
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H3K36me3. Mechanistically, METTL14 recognizes and
binds to H3K36me3, after which MTC interacts with
RNA Polymerase II and further installs m6A to actively
transcribed pre-mRNA [143]. Histone acetyltransferase
P300 (EP300)-mediated histone H3 lysine 27 acetylation
(H3K27ac) activates METTL3 transcription which stimu-
lates m6A modification on HDGF mRNA and enhances
its stability, and finally leads to tumor growth and liver
metastasis in human gastric cancer [77]. Similarly, lysine
demethylase 5c (KDM5C)-induced H3K4me3 demethyla-
tion in the promoter of METTL14 attenuates METTL14
transcription, resulting in reduced m6A deposition on
SOX4 and the upregulation of the tumor suppressor SOX4
in colorectal cancer [95].
The posttranslational modifications on m6A regulators

have also been identified and were found to play cru-
cial roles in controlling the activity of the m6A machin-
ery and therefore, the epitranscriptome. In HCC, SIRT1
activated the SUMO E3 ligase RAN binding protein 2
(RANBP2)whichmediated SUMOylation and degradation
of FTO, and resulted in more m6A on GNAO1, an anti-
tumor molecule in HCC [69]. METTL3 could be activated
by ATM-mediated phosphorylation at serine 43 and local-
ized to double-strand break sites, and YTHDC1 was sub-
sequently recruited due to METTL3-induced m6A depo-
sition. Interference with this METTL3-m6A-YTHDC1 axis
enhanced the sensitivity of cancer cells to DNA damage-
based therapy [144].
To sum up, the complicated network connecting m6A

modification and other genetic and epigenetic factors inte-
grates comprehensive information from various sources
and strengthens gene expression control more accurately.

4.2 Environmental exposure affects
m6Amethylation

In addition to internal factors, external exposure also has
an influence on m6A methylation. Human carcinogens in
different content elicit detrimental effects to human bod-
ies in genotoxic or non-genotoxic ways [145]. Evidence
has shown that cigarette smoke causes oncogenic muta-
tions and epigenetic changes [146, 147]. Tobacco smoking
can alter miRNA encoding genes [148–150]. Genes with
aberrant levels further participate in a myriad of patho-
logical processes, including tumorigenesis and tumor
progression [151]. Cigarette smoke condensate induced
hypo-methylation in METTL3 promoter caused METLL3
overexpression and subsequently more m6A modification
which promoted maturation ofmiRNA-25. The latter acti-
vated the AKT-p70S6 kinase pathway and played an onco-
genic role in pancreatic cancer [152].
Reduced global m6A level was observed in A549 lung

epithelial cells in response to sodium arsenite and partic-

ulate matter, and change in m6A level was associated with
the concentration of environmental toxicants [153]. In con-
trast, chronic exposure of human bronchial epithelial cells
to sodium arsenite-induced malignant phenotype with
increasedm6Amodificationwhichwas synergistically reg-
ulated by m6A modulators [154]. Dynamic m6A incorpo-
ration was found in chemical carcinogen-induced cellular
transformation, in which the METTL3-m6A-CDCP1 (CUB
domain-containing protein 1) axis contributed a lot to cell
proliferation and progression, consistent with the effect of
chemical carcinogenesis [155].
As a well-known oncogenic virus, Epstein–Barr virus

(EBV) is the culprit of about 2% of all malignancies via
regulating numerous host cell activities. Lang et al. [156]
have observed the interplay between EBV and m6A dec-
oration. EBV nuclear antigen 3C (EBNA3C), the viral-
encoded latent oncoprotein,was upregulated byMETTL14-
mediated m6A modification, and could in turn acti-
vate METTL14 transcription and directly interact with
METTL14 to promote its protein stability. Therefore,
METTL14 appears to be an important factor in EBV-
induced oncogenesis. In addition, m6A modification plays
a role in the lifecycle and infection of the hepatitis virus
which predominantly contributes to chronic liver diseases
and the tumorigenesis of HCC [157, 158]. It was found that
Hepatitis B virus (HBV) pregenomic RNA (pgRNA) was
m6A modified in the RRACH motif within the epsilon
stem-loop and bound by YTHDF2/3 proteins [157]. Block-
ing m6A methylation by either silencing METTL3 and
METTL14 or mutating this adenosine base to cytosine
affected the stability of pgRNA and suppressed reverse
transcription. The infection of Hepatitis C virus (HCV),
a single-stranded RNA virus, was proven to be regulated
by m6A modification as well [158]. The m6A machinery
in host cells is present not only in the nucleus but also
in the cytoplasm where they can modify the HCV RNA.
Silencing of METTL3 and METTL14 in Huh7 hepatoma
cells increased the production of infectious HCV particles
and the percentage of HCV-positive cells, while depletion
of FTO inhibited HCV particle production and infection.
Taken together, these studies indicate the important roles
of m6A modification during the pathogenesis, develop-
ment, and progression of virus-related cancers, implicating
that modulation of m6A modification could serve as pre-
vention or therapeutic strategies in virus-related cancers.

5 CLINICAL IMPLICATIONS OFm6A
IN CANCERS

A growing body of research on m6A methylation reveals
a new layer of epigenetic regulation in oncogenesis and
provides implications for the use of m6A in innovative and
effective diagnostic and therapeutic approaches.
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5.1 Implications of m6A in cancer
diagnosis and prognosis

Effective biomarkers, along with sensitive and specific
detection methods, will greatly contribute to the early
diagnosis of cancers, thus, improve the survival of patients.
Recently, m6Amethylation and its regulators have become
emerging biomarkers for cancer diagnosis and prognosis
[21, 159]. Owing to metabolic reversibility, high abundance
and stability, methylated nucleosides could be accessible
in biological fluids (e.g., serum and urine) or circulating
cells [160, 161]. Huang et al. [161] developed a liquid
chromatography-electrospray ionization tandem mass
spectrometric (LC-ESI-MS/MS)method to determinem6A
level in single cells and found increased RNAm6A methy-
lation in circulating tumor cells from the blood of lung
cancer patients. Pei et al. [162] also detected elevated m6A
level in the peripheral blood leukocyte from non-small
cell lung cancer patients by flow cytometry, indicating
the potential use of m6A as a non-invasive biomarker.
Furthermore, m6A regulators, includingMETTL3 [77, 163-
169], WTAP [170–173], FTO [174–177], IGF2BPs [178–184],
and YTHDFs [73, 185-192], have been proven to associate
with favorable or unfavorable prognosis in different types
of cancers (detailed in Section 3). It should be noted that
prognosis is not simply associated with the expression of
a certain gene but a comprehensive signature of multiple
m6A regulators in cancers, including lung cancer [163,
164], pancreatic cancer [166, 193], and HCC [194]. Despite
that m6A and its regulators exhibit powerful potential as
biomarkers, it is still challenging for clinical application
due to the heterogeneity of m6A in patients and the lack of
assays to detect site-specific m6A from low-input clinical
samples. Future single-cell sequencing techniques might
provide powerful assistance in solving such problems.

5.2 m6Amodification and
chemosensitivity

Drug resistance is the major cause of therapeutic fail-
ure and recurrence in chemotherapy. Recent studies have
indicated that m6A modification was associated with
drug response and chemoresistance [21, 159]. Mutations
of receptor tyrosine kinases, such as BCR-ABL (break-
point cluster region, BCR; tyrosine-protein kinase, ABL),
c-kit proto-oncogene (KIT) and fms like tyrosine kinase 3
(FLT3) frequently occur in leukemia and are effective ther-
apeutic targets in the clinic [195–197]. The tolerance of tyro-
sine kinase inhibitors (TKIs), a big challenge in leukemia
treatment, is mediated by m6A demethylation resulting
from elevated FTO in leukemia cells [198]. Decreased
ALKBH5was found in gemcitabine-treated patient-derived

xenograft (PDX) model and predicted poor clinical out-
come in PDAC, while overexpression of ALKBH5 could
sensitize PDAC to chemotherapy [87].Moreover,METTL3-
induced m6A installation was found to contribute to oxali-
platin resistance in colon cancer [199], cisplatin resistance
in NSCLC [120] and tamoxifen resistance in breast cancer
[112]. Therefore, silencing of METTL3 could reverse drug
resistance in the above scenarios [112, 120, 199], and could
enhance the sensitivity of DNA damage-based therapy in
vivo and in vitro [144]. Collectively, robust evidence unveils
the participation of m6A modulators in drug resistance,
shedding light on the application of these regulators as pre-
dictive markers in chemotherapy or drug targets in combi-
nation with chemotherapy.

5.3 The m6Amodification and cancer
immunotherapy

Although immunotherapy has been considered as a
promising treatment in defeating cancer, lacking durable
effects in some groups of patients limits its efficacy
[200–202]. Intriguingly, the absence of YTHDF1 in mice
enhances antigen-specific cluster of differentiation 8 (CD8)-
positive T-cell anti-tumor reaction due to promoted tumor
antigen cross-presentation in classical dendritic cells
(cDCs) [203]. As a result, the therapeutic efficacy of pro-
grammed death-ligand 1 (PD-L1) checkpoint blockade is
enhanced in YTHDF1-deficient mice [203]. What’s more,
the decline of FTO also improves the low response of
melanoma cells to interferon-gamma and enhances the
reaction to anti-PD-1 (programmed cell death protein 1, PD1)
blockade inmice [204]. These studies suggest thatYTHDF1
and FTO might be potential drug targets in combination
with immunotherapy.

5.4 Targeting m6A and its regulators in
cancer therapy

Given the benefits of targeting m6A methylation in can-
cer therapy, as discussed above, researchers never cease
exploring effective inhibitors of m6A enzymes. The most
well representative one is the development of small-
molecule agents targeting FTO. Initially, a natural com-
pound named Rhein was found to bind to FTO cat-
alytic domain and competitively inhibited the recognition
of m6A substrate [205]. An ascorbic acid analog was then
designed in 2014 to inhibit the 2-oxoglutarate-dependent
hydroxylase activity of FTO and elevate m6A level [206].
Later, meclofenamic acid (MA) and an acylhydrazine
compound, FTO inhibitor 12, have been identified to
have inhibitory activity on FTO over ALKBH5 [207, 208].
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By targeting FTO, R-2HG and FB23-2 exhibited promis-
ing inhibitory effects in the treatment of AML [52, 53].
More recently, two potent agents, CS1 and CS2, have
been developed by high-throughput screening from over
260,000 compounds and showed anti-tumor effects in
multiple cancers by suppressing the self-renewal of can-
cer stem cells and immune evasion [54]. The inhibitors
for m6A writers and readers are also of great interest to
the researchers. By screening a library of 4000 analogs
and derivatives of S-adenosyl-methionine (SAM), UZH1a
has been found to be an effective METTL3 inhibitor and
couldmodulate transcriptomicm6A signal in theMOLM13
leukemia cells; however, its in vivo effect still needs to be
elucidated [209]. As a small molecule inhibitor, BTYNB
was reported to disrupt the association between IGF2BP1
and target RNA,which resulted in the decrease ofE2 factor
(E2F)-driven cell cycle transition and inhibition of tumor
progression [210].Withmore andmore druggablem6A tar-
gets being proven with proof-of-concept evidence to com-
bat cancers, the identification of specific inhibitors and the
application of these inhibitors in the clinic, especially in
combination with other therapies, are of great importance
and in urgent need. Instead of altering the transcriptome-
wide m6A level, “m6A editing” is a CRISPR (clusters
of regularly interspaced short palindromic repeats)-CAS9
(CRISPR-associated protein-9)-based method to mediate
programmable RNA methylation or demethylation at a
specific locus. To achieve site-specific removal of m6A,
Liu et al. [211] engineered m6A ‘erasers’ by fusing cat-
alytic dead Cas9 (dCas9) with ALKBH5 or FTO, while
Li et al. [212] chose the RNA-targeting CRISPR-Cas sys-
tem, dCas13, to engineerALKBH5. Recently, dcas13 fusions
with truncatedMETTLE3 or modifiedMETTL3-METTL14
complex have been established to direct site-specific m6A
incorporation [213]. To date, these new techniques allow
precise manipulation of a single methylation site, in
the hope of evaluating the exact function of a single
methylation site and targeting of single m6A for cancer
treatment.

6 PERSPECTIVES AND CONCLUSION

Fast-growing research in the RNA epigenetics field delin-
eates a comprehensive picture about how m6A methy-
lation is tightly controlled by its enzymes (writers and
erasers) and works with reader proteins to participate
in almost every step of RNA metabolism. Hypo- or
hyper-methylationmight lead to aberrant gene expression,
abnormal cellular function, and diseases, such as cancer.
The direct links between m6A and various cancers not
only provide an insight into the mechanism of tumori-
genesis but also are valuable for guiding clinical applica-

tions in fighting against cancers. Considering the broad
effects of m6A in strengthening the anti-cancer effect of
chemotherapy and immunotherapy, the combination of
m6A-targeting agents with traditional chemotherapeutic
drugs or PD-1/PD-L1 inhibitors holds great therapeutic
promise. However, there is still a debate whether targeting
the total abundance/level of m6A methylation (i.e., target-
ing enzymes) or targeting gene-/site-specific m6A methy-
lation is a better choice, which warrants more proof-of-
concept studies. Overall, m6A modification is a rising star
in the epigenetic field and holds therapeutic promise for a
broad range of cancer.
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