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Abstract
Epithelial-to-mesenchymal transition (EMT) is implicated in a wide array of
malignant behaviors of cancers, including proliferation, invasion, and metas-
tasis. Most notably, previou studies have indicated that both cancer stem-like
properties and drug resistance were associated with EMT. Furthermore, microR-
NAs (miRNAs) play a pivotal role in the regulation of EMT phenotype, as a
result, some miRNAs impact cancer stemness and drug resistance. Therefore,
understanding the relationship between EMT-associated miRNAs and cancer
stemness/drug resistance is beneficial to both basic research and clinical treat-
ment. In this review, we preliminarily looked into the various roles that the
EMT-associated miRNAs play in the stem-like nature of malignant cells. Then,
we reviewed the interaction between EMT-associated miRNAs and the drug-
resistant complex signaling pathways of multiple cancers including lung cancer,
gastric cancer, gynecologic cancer, breast cancer, liver cancer, colorectal cancer,
pancreatic cancer, esophageal cancer, and nasopharyngeal cancer.We finally dis-
cussed the relationship between EMT, cancer stemness, and drug resistance, as
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well as looked forward to the potential applications of miRNA therapy for malig-
nant tumors.
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1 INTRODUCTION

The epithelial-mesenchymal-transition (EMT) represents
a morphogenetic process that is associated with the
invasiveness [1], metastasis [2], and chemoresistance [3]
of malignant tumors. In cancer cells undergoing EMT,
the expression of mesenchymal markers, including N-
cadherin [4] and vimentin [5], is up-regulated and the
expression of the epithelial markers, including E-cadherin
[4] and ZO-1 [6], was down-regulated. Moreover, the
essential program of EMT depends on EMT-associated
transcriptional factors, such as zinc finger E-box bind-
ing homeobox (ZEB1 and ZEB2), zinc finger proteins
(Snail and Slug), and Twist-family of basic helix-loop-
helix (bHLH) transcription factors (Twist1, Twist2, and
inhibitors of DNA binding and cell differentiation) [7, 8].
MicroRNAs (miRNAs) are a group of non-coding single-

stranded small RNAs (18-22 nucleotides) that suppress
gene expression by binding to the 3’-UTR of target mRNA
[9–11]. Mounting evidence exhibited that miRNAs play a
crucial role in the malignant behaviors of cancer cells,
including EMT-related cancermetastasis [12]. Therefore, a
better understanding of the roles of EMT-associated miR-
NAs can help us further explore their potential diagnostic,
prognostic, and therapeutic values [13].

2 EMT-ASSOCIATEDmiRNAs IN
CANCER STEM CELLS (CSCs)

CSCs, a special range of cancer cells, are capable of unlim-
ited self-renewal and differentiation, thereby contributing
to the initiation, progression, metastasis, and development
of drug resistance of malignant tumors [14–16]. Over the
past decade, a lingering issue regarding CSCs is how to
identify and select them. Nowadays, CD44 [17] and CD133
[18] have been the twomost common surfacemarkers used
to characterize CSCs. In addition, aldehyde dehydrogenase
is also a critical biomarker of CSCs due to their ability
to self-renew [19]. Recently, CD73 was found to be corre-
lated with the features of CSC since it elevated the expres-
sion of Sox9 in dual ATK-mediated signaling pathways via
regulating the expression of c-Myc, and down-regulated
glycogen synthase kinase 3β (GSK-3β). CD73 and Sox9 in

combination could more precisely predict the prognosis of
tumor, suggesting that CD73 might serve as a marker of
CSCs [20]. Several major factors (i.e. Nanog, Sox2, Oct4,
KLF4, c-Myc) are essential for the maintenance of the
pluripotency of CSCs, and they are regulated by miRNAs
[21–23]. It was reported that EMT was intimately associ-
atedwith toCSCs. EMT is a gradually adjusted process[24].
Cancer cells undergoing a partial EMT (hybrid epithe-
lial/mesenchymal phenotype) acquire stem-like features
[25]. This epithelial/mesenchymal hybrid status is crucial
for tumor initiation, in which the Wnt signaling pathway
plays a key part [26]. Apart from the Wnt signaling, there
are other crosstalks between EMT and CSCs, such as the
Notch/Jagged [27] and hedgehog [28] signal pathway.Most
EMT transcriptional factors, which are modulated by a
number of miRNAs, are implicated in CSCs, indicating
thatmiRNAs can affect EMT-associated elements and sub-
sequently exert an impact on the stem-like properties of
CSCs [29, 30].

2.1 EMT-associated miRNAs that
inhibit cancer stemness

miR-99a prevents EMT progression and reduces CSC pop-
ulation, both in vitro and in vivo, by directly suppress-
ing the expression of E2F transcriptional factor 2 (E2F2)
and adhesion G protein-coupled receptor E2 (ADGRE2)
[29]. Zhou et al. [31] illustrated that miR-125b overexpres-
sion could attenuate EMT phenotype and CSC genera-
tion by inhibiting SMAD family member 2 and 4 (SMAD2
and SMAD4). miR-145 targets multiple stem cell transcrip-
tion factors, and the action was found inversely corre-
lated with EMT in colorectal cancer (CRC). Furthermore,
Snail could elicit resistance to radiotherapy by repressing
the expression of miR-145 [32]. miR-199a-5p conferred its
tumor-suppressing function in triple-negative breast can-
cer by inhibiting EMT and stemness by down-regulating
its potential target phosphatidylinositol-4,5-bisphosphate
3-kinase catalytic subunit delta (PIK3CD) [33]. Loss of
miR-205 was found to expand mammary stem cell popu-
lations, enhance self-renewal, and promote EMT. Jagged1
secreted by the tumor stroma significantly suppressed
miR-205 [34]. Moreover, the loss of miR-205 induced cell



PAN et al. 3

stemness by activating NOTCH2 suggests that there might
be a jagged1/miR-205/NOTCH2 signaling pathway that
regulates cancer stemness [34, 35]. In prostate cancer, miR-
218 suppressed the exhibition of CSC-like properties and
EMT by binding to its potential target GLI family zinc
finger 1 (Gli1) [36]. Vascular endothelial growth factor A
(VEGFA) upregulated Sox2, resulting in cancer cell inva-
sion, self-renewal, andmetastasis triggered by Slug overex-
pression plusmiR-452 loss [37].miR-504, which is involved
in the Wnt-β-catenin pathway, was shown to suppress
malignant behaviors of glioblastoma multiforme (GBM),
including aggression, migration, EMT, and stemness by
directly inhibiting frizzled class receptor 7 (FZD7) [38].
miRNA sponges with multiple tandem miRNA binding
sites could separatemiRNAs from their targetmRNAs [39].
In CRC, hypoxia upregulated the expression of a newly-
identified lncRNAAK000053 in aHIF-1α-dependentman-
ner, and functioned as amiR-508 sponge. Additionally, loss
of miR-508 resulted in the overexpression of zinc finger E-
box binding homeobox 1 (ZEB1), Bmi1, and sal-like protein
4 (SALL4), subsequently leading to EMT and cancer stem-
ness, and poor survival of CRC patients [40]. The downreg-
ulation of miR-1247 induced by cancer-associated fibrob-
lasts boosted the performance of EMT and escalated cell
invasion and stemness. In addition, neuropilin-1 (NRP1)
served not only as the miR-1247 target but also as a core-
ceptor of EGFR signaling [41]. Han et al. [42] illustrated
that miR-4319 repressed cell proliferation, EMT, and can-
cer stemness by targeting forkhead box Q1 (FOXQ1) at
the post-transcriptional level in hepatocellular carcinoma
(HCC).
miR-203 was found to be not only a stemness-

suppressing factor but also an anti-apoptotic factor
and was downregulated by the EMT-associated tran-
scriptional factor, ZEB1 [43]. In renal cell carcinoma,
miR-203 inhibited LncRNA HOTAIR and induced a
tumor-suppressor effect, i.e., suppressing EMT via the
PTEN/PI3K/ATK pathway, which was involved in a rec-
ognized lipid kinase dubbed Acylglycerol kinase [44].and
the progress was also decrease the expression of KLF4
and Nanog[44, 45]. miR-203 inhibited the migration,
endothelial cell tube formation, and stemness of prostate
cancer cells, with Slug being downregulated. Moreover,
miR-203, by targeting Slug, further repressed the GSK-
3β/β-catenin signaling pathway [46]. Besides, silencing
miR-203 enhanced the stemness of colon cancer cells, with
several EMT activators up-regulated, in which Snail could
inhibit miR-203 expression. Additionally, hyaluronan and
CD44 suppressed miR-203 expression via activating c-Src
kinase [47].
Canonical tumor suppressor miRNAs, such as miR-34a,

miR-200 family, and let-7, interact in various signaling
pathways involving inhibition of CSCs and EMT. In ovar-

ian cancer, let-7a, miR-200c, and miR-186 could signifi-
cantly reverse resistin-induced EMT and stemness [48].
Dong et al. [49] reported thatmiR-34a andmiR-137 directly
targeted Snail, thus suppressing EMT and sphere-forming
capability of ovarian cancer cells, and leading to more
favorable survival outcome of the patients. In high grade
serous ovarian cancer cells with Snail knockdown, let-7
expression was up-regulated, and Nanog and Lin28 were
down-regulated, suggesting that Snail/Let-7 axis might be
an intersection between stemness and EMT [50]. miR-
204, miR-200c, and miR-34a inhibited cancer stemness
and EMT, leading to self-renewal and metastasis of breast
cancer [14]. EMT and CSC properties were involved in
the lung cancer risk of PM2.5, and chronic PM2.5 could
significantly downregulate the levels of three stemness-
associated microRNAs, Let-7a, miR-16 and miR-34a [51].
Weng et al. [52] identified an oncogene calledmalignant T-
cell amplified sequence 1 (MCTS1), whichmediated cancer
stemness and EMT in triple-negative breast cancer by up-
regulating interleukin 6 (IL-6) expression, elevating inter-
leukin 6 receptor (IL6R) level and increasing the popula-
tion of tumor-promoting M2 macrophages. Nonetheless,
miR-34a could reverse the carcinogenic effect of MCTS1
by inhibiting IL-6R expression and triggering M1 polar-
ization. ZNF281 not only interacted with Nanog, OCT4,
Sox2, and c-Myc, but also induced cancer stemness mark-
ers LGR5 and CD33 in CRC. The expression of ZNF281
was up-regulated by Snail but down-regulated by tumor
suppressor miR-34a [53]. AndmiR-200c andmiR-141could
regulate the expression of Bmi1 and ZEB1 in HCC with
bile duct tumor thrombus [54]. The inflammation-induced
transcriptional factor, that is a nuclear factor of activated
T-cells 1 (NFATC1) functioned as a paramount regula-
tor of cell plasticity in pancreatic cancer[55]. Particularly,
NFATC1 drove EMT to reprogram and bestowed pancreatic
cancer cells with the phenotype that CSCs possessed via
Sox2-dependent transcription of EMT and stemness fac-
tors, which was antagonized by antithetical p53-miR200c
signaling [55].
Together, it is demonstrated that EMT and stemness

share the similar signal pathways, which are mediated by
miRNAs. EMT-associated miRNAs could inhibit the stem-
ness features in various cancer types due to suppressing the
specific gene and the downstream signal pathways.

2.2 EMT-associated miRNAs that
promote cancer stemness

miR-10b promoted CSC features, such as stemness and
self-renewal. It is regulated by TWIST and TGF-β, and they
are both associated with CSCs [56–58]. Moreover, miR-
10b indirectly affected stem markers OCT4 and SNAIL
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expression in breast cancer through the PTEN/PI3K/AKT
pathway [58]. In breast cancer, the up-regulation of
TGF-β-induced miR-10b-5p contributed to tumor-related
myoepithelial cells acquiring invasiveness phenotype and
CSCs occurring through targeting RB1-induced coiled-
coil 1 (RBICC1) [57]. Thus, miR-10b is a bona fide reg-
ulator of the clonal potential and migration capabil-
ity of CSCs. Hypoxic microenvironment-induced miR-210
up-regulation, in breast cancer stem cells, inhibited E-
cadherin by binding to its open reading frames (ORF) and
inducing the over-expression of its transcription repressor
Snail [59]. miR-577 is involved in the metastasis of TGF-
β-induced gastric cancer by targeting caveolae-associated
protein 2 (CAVIN2). In addition, TGF-β activated miR-577
via the NF-κB signaling pathway [60]. In normal human
colonic epithelial cells, an elevated expression ofmiR-1207-
5p could reinforce stemness of the cancer cells as demon-
strated by significantly enhanced morphological pheno-
type of EMT and increased levels of mesenchymal and
CSC markers [61]. miR-5188 targeted forkhead box protein
O1 (FOXO1) and reduced the nuclear translocation of β-
catenin directly, it could promote the activation ofWnt sig-
naling to downstream EMT, cancer stemness, and c-Jun
both inHCC and breast cancer. In addition, c-Jun activated
miR-5188 expression at the transcriptional level, forming a
positive feedback loop, which could be induced by hepati-
tis X protein in HCC [62, 63].
Though themajority of EMT-associatedmiRNAs inhibit

the stemness, there still exsit some EMT-associated miR-
NAs promiting the cancer stemness, which is mentioned
above. For the most cases, these miRNAs facilitate the
stemness properties by blocking related tumor-suppressive
signals.

3 EMT-ASSOCIATEDmiRNAs
INVOLVED IN THE DEVELOPMENT OF
DRUG RESISTANCE OF CANCER

Long-term drug therapy tends to result in drug resistance
of cancer, a tough challenge facing clinicians. The devel-
opment of drug resistance is multifactorial and EMT is
a key factor [64]. Moreover, several miRNAs co-regulate
EMT and drug resistance. Therefore, understanding the
function of relevant miRNAs and the pathways involved
will help us gain insight into and eventually sort out the
problem.

3.1 Lung cancer

In docetaxel-resistant lung adenocarcinoma (LAD),
over-expression of miR-26a could suppress cellular pro-

liferation, increase apoptosis rate and switch EMT to
mesenchymal-epithelial transition (MET), both in vitro
and in vivo, by downregulating the enhancer of zeste
homolog 2 (EZH2) that was reported to induce EMT via
binding to the PTEN promoter to a certain extent [65, 66].
Down-regulated miR-130a was associated with multidrug
resistance in various cancers [67–69]. Moreover, miR-130a
reportedly targeted MET and enhanced TRAIL-sensitivity
in non-small-cell lung carcinoma (NSCLC) cells [70]. miR-
146b targets protein-tyrosine phosphatase 1B (PTP1B), and
miR-218 directly targets Slug/ZEB2 signaling pathway, as
well as let-7c suppresses ABCC2-transporter and Bcl-xl
were all shown to be capable of reversing EMT, thereby
lowering the resistance of lung cancer cells to cisplatin
[69,71,72]. Overexpression of teratocarcinoma-derived
growth factor 1 (TDGF1), an epidermal growth factor
(EGF)-related gene, generated a phenotype of erlotinib
resistance, both in epidermal growth factor receptor
(EGFR)-mutated and EGFR-tyrosine kinase inhibitor
(TKI)-sensitive NSCLC cells, which was confirmed by
in-vitro studies, in murine xenograft models and clinical
patients. Mechanistically, SRC and ZEB1 activated by
TDGF1 stimulate EMT by down-regulating miR-205. As
a consequence, up-regulated miR-205 might repress SRC
andZEB1 activation in aTDGF1-dependent fashion, restor-
ing the sensitivity to erlotinib. Furthermore, targeting both
EGFR and SRC might overcome inherent EGFR-inhibitor
resistance in EGFR-mutated NSCLC patients positive
for TDGF1 [73]. When PRKCA was directly targeted to
repress FAK/Ras/c-Myc signaling pathway, miR-296-3p
stimulated its own expression, forming a feedback loop
that blocked cisplatin chemoresistance and EMT sig-
naling [74]. Additionally, miR-296-3p was inactivated
by DDX5/HDGF/β-catenin signaling, leading to a more
aggressive metastasis and stronger chemoresistance in
lung adenocarcinoma (LAD) [74]. It was also reported
that silencing c-Myc regulated by miR-451-induced MET
in docetaxel-resistant LAD cells through decreasing the
expression level of matrix metalloproteinase-2 (MMP-2),
matrix metalloproteinase-9 (MMP-9), Snail, p-ERK as
well as p-GSK-3β and increasing E-cadherin expression.
Furthermore, patients with high miR-451 expression had
significantly)P <0.05(more favorable prognosis compared
with those with low miR-451 expression. These findings
suggested that miR-451/c-Myc/ERK/GSK-3β axis played a
crucial role in suppressing EMT phenotype in docetaxel-
resistant LAD [75]. Yue et al. [76] reported that miR-483-3p
reversed EMT to MET and inhibited the invasion, migra-
tion, and metastasis of lung cancer cells resistant to
gefitinib. In molecular terms, miR-483-3p directly targeted
integrin β3 (ITGB3), and thereby inhibited downstream
focal adhesion kinase (FAK)/ERK signaling pathways.
Moreover, the miR-483-3p deficiency in gefitinib-resistant
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lung cancer cells might be ascribed to the hypermethy-
lation of its own promoter. It was reported that miR-495
served as an oncogenic miRNA or a tumor-suppressor
in a variety of cancers [77–79]. Intriguingly, different
theories are proposed about its function in NSCLC and
small cell lung cancer (SCLC). In NSCLC, miR-495
decreased vimentin but increased E-cadherin at both
transcriptional and translational levels [80]. Additionally,
miR-495 reversed cisplatin resistance by suppressing drug
resistance genes ERCC1 and ABCG2 in cisplatin-resistant
NSCLC cells [80].Of note, ubiquitin-conjugating enzyme
E2 C (UBE2C), which promotes EMT, was found to
mediate miR-495 in the reversal of cisplatin resistance
[80].Furthermore, the combination of siUBE2C and cis-
platin caused the in vitro down-regulation of vimentin and
up-regulation of E-cadherin in mRNA and protein levels.
miR-495 was also found able to inhibit tumor growth in
vivo. These results indicated that the miR-495-UBE2C-
ERCC1/ABCG2 axis could restore the sensitivity to cis-
platin by down-regulating anti-drug genes and inhibiting
EMT in cisplatin-resistant NSCLC [80]. However, miR-495
promoted the EMT-related chemoresistance of SCLC
via ETK/BMX. This study provided a promising strategy
of restoring the sensitivity of SCLC to multiple drugs,
including doxorubicin, cisplatin, and VP-16 in SCLC: i.e.,
by expressing miR-495 or depleting ETK/BMX [79].
Canonically, the miR-200 family, consisting of miR-141,

miR-200a, miR-200b, miR-200c, and miR-429, serves as
tumor suppressors in assorted cancer types, including lung
cancer. It is well-known that miR-200 participates in the
TGF-β-induced EMT. Typically, the inhibitory effect of
miRNA depends on the number of binding sites in the
3’UTR of the targetmRNA. Burk et al. [81] found that TGF-
β2 was a direct target of miR-200. However, Gregory et al.
[82] reported that miR-200 worked on all the three TGF-
β isoforms, indicating that miR-200 influences the expres-
sion of TGF-β in both direct and indirect manners due to
the lack of binding sites in TGF-β1 and TGF-β3. Besides,
the prolonged exposure to TGF-β significantly inhibited
the level of miR-200 because there were more methylated
cytosine phosphate guanine)CpG) in the miR-200 pro-
moter. By up-regulatingmiR-200b andmiR-141, and down-
regulating ZEB1 in NSCLC cells, nintedanib was capable
of reversing TGF-β1-induced EMT and resistance to gefi-
tinib. Thus, the combined use of gefitinib and nintedanib
promises to be a new alternative for the treatment of
NSCLC cells, since it takes care of both the resistance
to gefitinib and EMT phenotype [83]. In TGF-β-mediated
EMT, the miR-200 family depletion led to an up-regulated
expression of ERBB receptor feedback inhibitor 1 (ERRFI1),
a negative regulator of EGFR. The ERRFI1-mediated
decrease of EGFR took place simultaneously with a TGF-

β-induced EMT-related kinase switch of cancer cells to an
EGFR-independent state with AKT activated.
In primary tumor xenografts of patient-derived lung

and pancreatic cancers that carried wild-type EGFR, the
tumorMIG6 (mRNA)/miR200 ratio was negatively associ-
ated with the responsiveness to erlotinib in vivo. This indi-
cated that a low ratio of ERRFI1 to miR-200 might serve as
a potential predictor of the tumor responsiveness to EGFR-
TKIs [84]. In addition to the TGF-β signaling, miR-200c
might be related to the obstruction of paclitaxel resistance
in lung cancer cells via cathepsin L (CTSL)-mediated EMT.
Moreover, miRNA-200c and CTSLweremutually attached
in a feedback loop [85]. Interestingly, Krentz Gober et al.
[86] indicated that the signal containing miR-140/141/200c
was probably regulated by the cell cycle instead of TGF-
β. Particularly, this study revealed that the inhibition of
TGF-β did not suppress EMT in lung cancer cells but
induced an EMT-intermediate state, which overturns the
traditional notion about TGF-β-mediated EMT. Prolif-
eration/growth signals by constitutively-activated EGFR
might depend onTGF-β and, in this context; theremight be
an interaction between TGF-β and EGFR signaling path-
ways that obstruct EMT progression instead of stimulat-
ing it. This assumption needs to be further verified with
more researches, preferably involving cellular or tumoral
field.
Researchers have failed to reach a consensus about the

function of miR-155 either. On the one hand, conspicu-
ous discrepancies were observed in the expression lev-
els of miR-155 and miR-200c, which were dramatically
decreased in gefitinib-resistant NSCLC cells. Apart from
this finding, the expression of SMAD2 and ZEB1 were
identified as the target of miR-155 and miR-200c, respec-
tively, were substantially up-regulated. As expected, the E-
cadherin expression was down-regulated upon restrictive
histone modification, whereas vimentin was up-regulated
after active histone modification. Besides, this deficiency
of miR-155 and miR-200c might be correlated with the
epigenetic modifications-induced EMT and might pro-
mote the loss of sensitivity to gefitinib irrespective of
the secondary EGFR mutation, which some gefitinib-
resistant cells possess [87]. On the other hand, miR-155
was found to induce EMT by targeting RHOA at the post-
transcriptional level [88]. Moreover, microspherule pro-
tein 1 (MCRS1) promotes TGF-β1-induced EMT and trig-
gers resistance to cisplatin and cetuximab by up-regulating
ABCB1 (a multidrug-resistance gene) at the transcrip-
tional level. Nevertheless, MCRS1 was directly mediated
by miR-129, indicating that miR-129 was a tumor sup-
pressor that impacted cellular behaviors by regulating the
expression of MCRS1 in NSCLC cells. To sum up, the miR-
129/MCRS1/miR-155 signal axis offers a new perspective
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for us to understand themolecularmechanismof EMTand
drug resistance development, two events that are indica-
tive of the invasion and metastasis of tumor [89]. More
researches arewarranted to understand the diversified role
of miR-155.
Several miRNAs also play oncogenic parts in lung can-

cer. The miR-134/487b/655 cluster located on chromosome
14q32 was also found to cause the TGF-β1-induced EMT
and influence the gefitinib resistance by directly repressing
MAGI2 and its repression subsequently led to the deple-
tion of PTEN in lung cancer. EMT was related to the loss
of drug sensitivity and acquisition of resistance to EGFR-
TKIs, whereas preservation of an epithelial phenotype
ensured a favorable response to EGFR-TKIs even in LAD
patients harboring wild-type EGFR genes [90–92]. These
researches indicated that EMT was responsible for the
resistance toEGFR-TKIs, independent of EGFR status. The
miR-134/miR-487b/miR-655 cluster promises to be a thera-
peutic strategy for patients with advanced LAD in the case
of EMT phenotype [93]. UpregulatedmiR-15b andmiR-27a
contributed to EMT and the resistance to cisplatin both in
vivo and in vitro by targeting phosphatidylethanolamine
binding protein 4 (PEBP4) and phosphatidylethanolamine
binding protein 1 (PEBP1/RKIP), respectively [94, 95].
By modulating EMT, miR-21 reinforced the invasiveness
and migrating ability of cisplatin- and paclitaxel-resistant
LAD cells by targeting HBP1 [96]. A noticeable shift was
observed from the epithelial to the mesenchymal pheno-
type after the miR-127 level was elevated in lung cancer
cells, and this shift was related to the increased resistance
to the EGFR inhibitor and the tumor-propagating poten-
tial [97]. In cancer cells, up-regulated miR-127 led to an
evident change from the epithelial to the mesenchymal
phenotype, and this change was related to their stem-like
features, enhanced resistance to the EGFR receptor
inhibitor, and tumor-spreading potential. On the other
hand, suppressing miR-127 could substantially reverse this
malignant transition, impaired the stem-like traits and the
in vivo tumorigenicity of malignant cells.

3.2 Gastric cancer

The expression of miR-200c and ZEB2 was down- and up-
regulated, respectively, in gastric cancer cells, with an evi-
dent decline of sensitivity to trastuzumab after treatment
with TGF-β. Besides, miR-200c was able to restore the sen-
sitivity to trastuzumab and repress the migration and inva-
sion of cancer cells by inhibiting ZEB1 and ZEB2 [98].
miR-204 was inhibited in fluorouracil (5-FU)-resistant GC
cells with the epithelial markers decreased and the mes-
enchymal markers increased simultaneously. In addition,

restoration of TGFBR2, a target of miR-204, could recover
resistance to 5-FU in GC cells with miR-204 upregulated
[99]. Like miR-204, miR-574-3p could antagonize cisplatin
resistance in gastric cancer by targeting ZEB1 at both tran-
scriptional and translational levels [100]. Nonetheless, the
resistance to cisplatin or 5-FU inGC cells could be dramati-
cally reduced by suppressingmiR-17, which impaired EMT
in GC cells via death effector domain-containing (DEDD)
[101].
Therefore, different miRNAs are associated with anti-

neoplastic drug in gastric cancer. More miRNAs are
needed to explore to reduce the drug resistance in gastric
cancer.

3.3 Gynecologic cancer

Owing to the aberrant methylation engendered by
DNMT1 over-expression, miR-30a-5p, and miR-30c-5p
levels dropped significantly in cisplatin-resistant ovarian
cancer (OC) cells. On the contrary, miR-30a/c-5p inhib-
ited Snail and DNMT1 directly. Hence, a feedback loop
between DNMT1 and miR-30a/c-5p could be a potential
signature for addressing EMT and cisplatin resistance in
OC, thereby providing a therapeutic strategy for epigenet-
ically improving the responsiveness to anti-cancer agents
[102].
Elevated miR-363 restored the sensitivity to cisplatin of

cisplatin-resistant epithelial ovarian cancer (EOC) cells,
both in vitro and in vivo. Moreover, studies showed
that Snail, identified as a functional target of miR-363,
was greatly elevated, not only in epithelial ovarian can-
cer(EOC) cell lines resistant to cisplatin but also in EOC
patients. Moreover, the over-expression of Snail dramati-
cally inhibited the repressing effect of miR-363 on cisplatin
resistance of EOC cells, indicating that miR-363 mod-
ulates cisplatin resistance through Snail-induced EMT
[96]. Zhang et al. [103] found that miR-1294 dysregula-
tion affected OC cisplatin resistance by regulating IGF1R.
IGF1Rknockdown could suppress the proliferation,migra-
tion, invasion, and EMT of SKOVP/DDP cells. Further,
elevated miR-1294 expression inhibited the development
of resistance to cisplatin in OC. The miR-200 family also
played a major role in the inhibition of EMT and sensi-
tivity to carboplatin and paclitaxel of OC [104]. Besides,
miR-200b andmiR-200cwere inhibited in taxane-resistant
OC cells, and the inhibition was correlated with EMT pro-
gression as evidenced by the elevated expression level of
MMP2, MMP9, and vimentin [105]. It was found that, in
cervical cancer, miR-25-3p reversed EMT to MET with
enhanced sensitivity to cisplatin in cisplatin-resistant cells
by targeting Sema4C [106].
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Knockdown of iASPP, a newly-identified key EMT
inducer, sensitized cervical cancer cells to cisplatin and
repressed cell proliferation in vivo. Moreover, iASPP
promoted the expression of miR-20a targeting FBXL5 and
BTG3 in a p53-dependentmanner.miR-20a expressionwas
increased and FBXL5 and BTG3 expression decreased in
cervical cancer samples and the results were found to be
related to a poor prognosis of the patients [64].

3.4 Breast cancer

Enhanced miR-129-5p expression significantly increased
E-cadherin and suppressed vimentin and N-cadherin
expression in MCF-7/doxorubicin (DOX)-treated cells.
EMT has been seen as an important mechanism responsi-
ble for the increased multidrug resistance in breast cancer
[107, 108]. As expected, miR-129-5p substantially reduced
IC50 of DOX, vincristine, and paclitaxel in the MCF-
7/DOX-treated cells. However, the level of miR-129-5p in
MCF-7 cells was lowered by EZH2 and SOX4, which act,
respectively, as an epigenetic modification-silencing gene
and a master control gene of EMT, respectively [109].
ZEB1 and ZNF217, identified as a transcriptional activator
of TGF-β, were inhibited by miR-200c that could restore
trastuzumab sensitivity and repress invasion and migra-
tion of breast cancer cells. Given that ZEB1 reportedly
inhibited miR-200c, presumably, ZNF217 might partici-
pate in a feedback suppression of miR-200c through TGF-
β/ZEB1 signaling [81].
Introducing miR-200c, inhibiting TGF-β signaling path-

ways, or silencing either ZEB1 or ZNF217 repressed
the invasive capability and enhanced the sensitivity
of breast cancer cells to trastuzumab. Therefore, the
complicated interaction between miR-200c/ZNF217/TGF-
β/ZEB1 andmiR-200c/ZEB1 suppressed themetastasis and
trastuzumab resistance of cancer cells, suggesting that
EMT might be involved in the molecular induction of
the malignant behaviors of breast cancers [110]. Recently,
an lncRNA, termed Linck, was found to exaggerate the
expression of ZEB1, and both were negatively related to
the miR-200 family [111]. Due to the inhibitory capability
of EMT, miR-708-3p was deemed as a tumor-suppressor
miRNA in breast cancer. In addition, Lee et al. [112]
suggested that reintroduction of miR-708-3p might be a
promising therapeutic option for overcoming the chemore-
sistance of breast cancer cells and, at the same time, sup-
pressing breast cancer metastasis.
miR-106b, miR-93, and miR-25 collectively form the

miR-106b-25 cluster, and all target a transcriptional stimu-
lator of E-cadherin, i.e., EP300. They were up-regulated in
doxorubicin-resistant cells, with miR-25 playing the lead-
ing role in this phenotype. With this cluster, upregulation

of a singlemiRNAwould result in target cells obtaining the
EMT phenotype, along with the proliferative ability upon
treatment with doxorubicin [113].
EMTmight be closely related to themalignant behaviors

and increase multidrug resistance of breast cancers,while
miRNAs could regulate the formation and development of
EMT. miRNAs might be a promising therapeutic option
for overcoming the chemoresistance of breast cancer
cells.

3.5 Liver cancer

In HCC, miR-125b could overcome the resistance to oxali-
platin through a mechanism involving the reduction of
EVA1A-mediated autophagy, with a simultaneous loss of
EMT phenotype [114]. Depletion of Smad4, a target ofmiR-
130-3p, reversed EMT to MET in gemcitabine-resistant
HCC cells. Furthermore, miR-130a-3p could restore the
sensitivity to gemcitabine and inhibit cell growth in
gemcitabine-resistant cells [115]. Vitamin D (VitD) has
been deemed as a new regulator of the mTOR pathway
[116]. Donatella et al. [117] demonstrated that, in a molecu-
lar network, VitD reduced oncogene expression and mod-
ulated EMT by up-regulating the expression of miR-375,
and subsequently resulted in a reversal of the sensitiv-
ity to everolimus in everolimus-resistant HCC cell lines.
Particularly, c-Myc was recently identified as a novel tar-
get of miR-375. The aforementioned results might pro-
vide a new approach to restore the sensitivity to mTOR
inhibitor sensitivity in the treatment of HCC. The tumor-
suppressing function of miR-612 was validated by inhibit-
ing EMT and resistance to cisplatin and 5-FU through the
PI3K/AKT2 signaling pathway. Recently, it could report-
edly promote HCCmetastasis via influencing the morpho-
logical formation of invadopodia andEMT. Studies showed
that this phenomenon involved the HADHA-dependent
lipid reprogramming [118, 119].
Nevertheless, miR-27a and miR-32-5p were highly

expressed in liver cancer patients, particularly in cisplatin-
resistant patients, predicting a poor prognosis. Further
studies found that miR-27a regulated EMT partially by tar-
geting the Raf kinase inhibitor protein (RKIP) and miR-
32-5p triggered the activation of the PI3K/AKT pathway
by inhibiting PTENand generated exosome-mediatedmul-
tidrug resistance by prompting EMTand angiogenesis [114,
120]. It has been known that Fbw7, which is regarded
as a miR-233 target, suppressed EMT, and subsequently
increased chemosensitivity of hepatocellular carcinoma
cells [121–123]. Notch-1 has been confirmed to be one of
the targets of FBW7 [124] and to induce EMT in human
cancers [125]. Interestingly, genistein could promote the
antitumor effect of miR-223 inhibitor by regulating EMT
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and Notch-1 pathway [124]. Genistein in combination with
miR-223 inhibitor can be a potential therapeutic strategy
for the treatment of pancreatic cancer.
The production of EMT phenotype and the reversion

from EMT to MET are related to tumor resistance. So in
liver cancer, miRNAs could regulate EMT and improve the
sensitivity of tumor drugs in liver cancer.

3.6 CRC

miR-134 was reported to increase the sensitivity of CRC
to oxaliplatin. However, it was found that astragaloside IV
could inhibit the EMT of CRC by promoting the expression
of miR-134, which obviously down-regulated the CREB1
signaling pathway, and further restored the sensitivity
to chemotherapeutic agents [126]. miR-139-5p and miR-
195-5p significantly suppressed the metastasis potential
and chemo-resistance of CRC through EMT by target-
ing BCL2 and glycerophosphodiester phosphodiesterase
domain containing 5 (GDPD5), respectively [127, 128].miR-
195-5p bound to its direct target Notch2 to repress IL-4
secretion modulated by GATA3, ultimately leading to the
inhibition of M2-like tumor-associated macrophage polar-
ization [129]. Low miR-145 expression was related to poor
responsiveness of rectal cancer patients to neoadjuvant
chemoradiation on the basis of 5-FU chemotherapy.Mech-
anistically, Slug repressed the activity of the miR-145 pro-
moter in CRC cells. In addition, the ectopic expression
of Slug lowered the sensitivity to 5-FU, and inversely, the
reappearance of miR-145 dramatically increased 5-FU sen-
sitivity in vitro [130].
By targeting adenomatous polyposis coli (APC), miR-

125b, which is up-regulated by the CXCL12/CXCR4 axis,
promotes the progression of EMT, thereby further acti-
vating the Wnt/β-catenin signaling pathway. Importantly,
there existed a reciprocal positive feedback loop between
miR-125b and CXCR4. Further in-vitro and in-vivo exper-
iments on CRC verified a possible role of miR-125b, i.e.,
promoting EMT and autophagy, in the development of
the resistance to 5-FU [131]. Intriguingly, although miR-
514b-3p and miR-514b-5p are both derived from the same
RNA hairpin, they each have different influence on the
invasion and metastasis of CRC. miR-514b-3p inhibited
migration and drug resistance of CRC cells by decreas-
ing the expression of mesenchymal markers and increas-
ing the expression of epithelial markers. On the contrary,
miR-514b-3p played a pro-metastatic role by speeding up
the process of EMT. However, the underlying mechanism
remains unclear [40]. Apart from chemotherapeutic appli-
cation,miRNAs can also regulate the effect of radiotherapy
on CRC. For instance, miR-124 could enhance the sensitiv-
ity of CRC cells to radiation via inhibiting the expression of

a recently-identified EMT regulator and stemness inducer,
PRRX1 [132].

3.7 Pancreatic cancer

Hiramoto et al. [133] and Funamizu et al. [134] illus-
trated that miR-200b, miR-509-5p or miR-1243 overexpres-
sion could each increase the sensitivity to gemcitabine
by suppressing EMT-associated gene expression, thereby
upregulating the E-cadherin expression in pancreatic can-
cer. Moreover, over-expression ofmiR-125a-3p ormiR-3656
played similar role by targeting Fyn and RHOF, respec-
tively [128, 135]. However, TWIST1 overexpression atten-
uated the enhanced chemotherapeutic effects of miR-
3656 [135]. On the locus of miR-203, the suppressive
histone mark H3K27me3 was reduced by the loss of ZEB1.
Mocetinostat, belonging to class I HDAC inhibitor, could
affect drug resistance by down-regulating of ZEB1 expres-
sion and up-regulating miR-203. Remarkably, mocetino-
stat did not exert its effect of anti-resistance to gemc-
itabine on cancer cells, where ZEB1 had been low and
miR-203 expression was high, suggesting that the effect
of mocetinostat would diminish if miR-203 was already
present and ZEB1 had not appeared. However, whether the
effect of mocetinostat depends on miR-203 had not been
proved since MTT activity was increased in gemcitabine-
treated cells in either the presence or the absence
of mocetinostat [43]. Epigenetic drugs for restoring
chemo-sensitivity of cancers trapped in EMT phenotype,
Short-time treatment of tumor cells with clinically-used
nanomolar doses, without causing immediate cytotoxicity,
could result in an antitumor “memory” reaction [136, 137].
On the contrary, miR-301 both regulated EMT and

induced gemcitabine resistance by down-regulating E-
cadherin expression [134]. An apoptosis-facilitating gene,
dubbed Bcl2 related ovarian killer (BOK), was a target of
miR-296-5p in PC cells. miR-296-5p mimic transfectants
also had an aberrant expression of mesenchymal mark-
ers. In addition, these transfectants displayed an obviously
low apoptosis ratio in reaction to gemcitabine and 5-FU,
with the absence of BOK expression. These results sug-
gested that miR-296-5p/BOK signaling axis did play a cru-
cial part in the invasion, EMT, and drug resistance devel-
opment in pancreatic ductal adenocarcinoma cells (PDAC)
cells [138]. Growth arrest-specific 5 (GAS5), a lncRNA, was
identified as a tumor suppressor due to its ability to inhibit
the malignant behavior of various cancers [139]. Upregu-
lated GAS5 repressed the stem cell-like features, EMT, and
gemcitabine resistance of PC cells through directly bind-
ing the 3’UTR of miR-221 and subsequently enhancing the
expression of its target, suppressor of cytokine signaling 3
(SOCS3) [140].
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3.8 Esophageal cancer

In esophageal squamous cell carcinoma, miR-125a-5p up-
regulated the E-cadherin and down-regulated the N-
cadherin and vimentin expression, with an enhanced cyto-
toxic effect of cisplatin, whose tumor-suppressive effects
on patients were further confirmed by longer survival
time and earlier tumor stage. Remarkably, signal trans-
ducer and activator of transcription-3 (STAT3) were tar-
geted by miR-125a-5p. However, IL-6, which was exten-
sively reported to activate the STAT3 signaling pathway,
could block the tumor-repressing effect of miR-125a-5p
[141, 142]. miR-221 promoted the resistance of esophageal
adenocarcinoma to 5-FU, in part, by regulating Wnt/β-
catenin-EMT pathways in a DKK2-dependent way [143].
There are few researches of EMT-associated miRNAs in
esophageal cancer resistance and they are need to further
explore.

3.9 Nasopharyngeal cancer

After transfection with miR-139-5p mimics, the expression
of mesenchymal markers, such as MMP-9 and Vimentin,
was decreased while the expression of epithelial markers,
such as ZEB1, β-cadherin, and E-cadherin, was upregu-
lated in cisplatin-resistant NPC cells. These results exhib-
ited that miR-139-5p might act as a tumor suppressor in
the restoration of the sensitivity of NPC cells to cisplatin
by regulating EMT [144]. miR-296-3p, which was nega-
tively regulated by nicotine, inhibited PI3K/AKT/c-Myc
or Ras/BRAF/ERK/MEK/c-Myc pathways to prompt its
own expression in an MK2-dependent manner. Thus, the
upregulation of miR-296-3p due to the feedback loop ulti-
mately suppressed NPC cell metastasis and drug resis-
tance partially via EMT. Besides, NPC patients with higher
miR-296-3p expression had longer overall survival than
those with lower miR-296-3p expression [145]. miR-205-5p
facilitated themigration and invasion of cisplatin-resistant
NPC cells by inhibiting PTEN expression, resulting in a
decrease expression in E-cadherin and an increase expres-
sion in vimentin, N-cadherin, MMP-2, and MMP-9. These
findings suggested that PTEN, deemed as a candidate
target of miR-205-5p, exerted its tumor-repressive EMT-
regulating function through the PI3K/AKT signaling path-
way inNPC cells that acquire cisplatin-resistant phenotype
[146]. In contrast, miR-374a inactivated pPI3K/pAKT/c-
JUN network by directly targeting CCND1, inhibiting the
downstreamEMT-related genes and cell cycle progression.
Intriguingly, this feedback loop was modulated by tumor
suppressor PDCD4, which was further confirmed in clini-
cal specimens [147]. However, it is possible that miR-374a

plays a complicated part in context-dependent carcinogen-
esis since it has been reported to serve as an oncogene in
breast cancer progression. Nonetheless, its roles remain
poorly understood in lung cancer pathogenesis [148–150].
The function of miR-374a needs to be further explored in
various cancer types.

3.10 Other cancers

miR-26b could reverse temozolomide resistance-mediated
EMT in gliomaby targetingWee1 [151].miR-140 plays a piv-
otal role in tumor-suppression for it protracted the survival
of patients who had some tumors, including glioblastoma.
Up-regulated miR-140-5p and down-regulated cathepsin B
(CTSB) were strongly associated with enhanced temozolo-
mide (TMZ) sensitivity in GBM. Knocking down CTSB
inhibitedmesenchymal transition. These results suggested
that not only miR-140 targeted the CTSB signaling path-
way, this signaling was also crucial in the inhibition of the
innate resistance to TMZ [152]. Several studies suggested
that miR-125a-3p was involved in the modulation of EMT
and chemoresistance in prostate cancer cells [40, 147, 153].
In oral squamous cell carcinoma, it could promote EMT by
upregulate PAK1 and occurred the resistance to cisplatin
by upregulating YAP andERCC1 protein Besides,miR-485-
5p lowered the protein expression of PAK1 in OSCC cells.
Contrary to the function of PAK1,miR-485‑5p could reverse
EMT and greatly obstructed the invasion and migration
and sensitized cisplatin-resistant cells [154]. TGFβ-miR-
499a-SHKBP1 axis orchestrated the EMT-related kinase
switch that induced the resistance of CD166+ osteosar-
coma cancer cells to EGFR inhibitors, implying that the
suppression of EMT-related kinase switch induced by
TGFβmay reverse the chemoresistance to EGFR inhibitors
[155]. Various miRNAs in drug resistance of different can-
cers are not clear entirely and they need further study in
the future.

4 EMT-ASSOCIATEDmiRNAs
MEDIATE DRUG RESISTANCE BY THE
DELIVERY OF EXOSOMES

Exosomes are a subgroup of extracellular vesicles and
their diameter ranges from 40 nm to 160 nm [156]. Mul-
tiple studies have reported exosomes could mediate cel-
lular communication under physiological and patholog-
ical conditions via transferring miRNAs [157]. Recently,
exosomal miRNAs were found to play a pivotal role in
EMT-mediated drug resistance. miRNAs can be loaded
into exosomes by means of the endosomal sorting
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F IGURE 1 The relationship between EMT, stemness, and drug resistance. On one hand, the cancer cells harboring EMT phenotype may
transform into drug-resistant cells after long-term therapy. On the other hand, the EMT may induce the generation of CSCs, which may go
through a process of differentiation. Then the differentiated cells have the potential heterogeneity of being resistant to drug. Furthermore,
EMT can generate the distant metastasis of cancer cells through the approaches of intravasation and extravasation

complex required for transport (ESCRT) [158]. Apart
from the ESCRT-dependent manner, RNA-binding pro-
teins could also recognize the specific motif in the 3′
portion of miRNA to facilitate its loading into exosomes
[159]. Furthermore, ceramide might take part in the sort-
ing of the bioactive molecules into exosomes and promot-
ing domain-induced budding. The ceramide-rich domains
curved spontaneously to form the invaginations, resulting
in the generation of exosomes [160].
Exosomes containing miR-155 from paclitaxel-resistant

gastric cancer cellswere adequately absorbed by paclitaxel-
sensitive GC cells, resulting in an exhibition of EMT and
chemoresistance phenotypes. Mechanistically, miR-155
exerts its oncogenic effect by targeting tumor protein p53
inducible nuclear protein 1 (TP53INP1) and GATA binding
protein 3 (GATA3) [161]. Besides, Santos JC et al. [162–164]
demonstrated that exosome-mediated miR-155 was posi-
tively related to breast cancer cells with EMT-associated
chemoresistance by mediating the depletion of C/EBP-
β activity and targeting FOXO-3a-3′-UTR directly. How-
ever, the miR-128-3p could increase intracellular oxali-
platin accumulation, by suppressing the EMT pathway.
Importantly, lower expression of miR-128-3p in patients
with advanced CRC was associated with weaker respon-
siveness to oxaliplatin with poor prognosis. Moreover,
after transfected into human normal colorectal epithelial
cells,miR-128-3pwas effectively parceled into secreted exo-
somes, which could be directly transferred to oxaliplatin-
resistant cells, leading to an improvement in oxaliplatin

response. The possible mechanism might be that miR-
128-3p suppressed oxaliplatin-induced EMT via inhibiting
Bmi1 expression and decreased effluent oxaliplatin inside
the cell through suppressing the expression of MRP5, a
drug transporter [165].
According to the studies concerning EMT-associated

exosomal miRNAs in drug resistance, some critical prob-
lems remain to be solved. For instance, how the exo-
somes target specific recipient cells is still unclear. Impor-
tantly, miRNAs can be loaded into exosomes for therapeu-
tic use. miR-374a-5p and miR-214 inhibitors were incorpo-
rated into exosomes to reverse drug resistance by rescuing
Neurod1 and PTEN in GC, respectively [166, 167]. How-
ever, the therapeutic effect and the potential side-effects
should be further evaluated in large-sized clinical trials.
More efforts have to be made to translate these research
results into clinically effective therapies [168, 169].

5 CONCLUSION AND FUTURE
PERSPECTIVE

Given the nature of EMT, it is feasible to target the EMT
to overcome the resistance. The therapeutic strategies can
fall principally into three categories: (1) inhibiting the
EMT initiation, (2) eliminating the cancer cells undergo-
ing EMT, and (3) reversing the EMT to its opposite state,
i.e., MET, since miRNAs play an important role in EMT-
induced drug resistance. Targeting miRNAs might be a
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TABLE 1 The target of EMT-associated miRNAs in different cancer types

miRNAs Cancer types Direct/indirect targets Reference
Tumor suppresser miRNAs
miR-25-3p CC Sema4C [106]
miR-26a LC EZH2 [65]
miR-30a/c OC DNMT1 [102]
miR-34a OC, LC, BC, CRC Snail, MCTS1, ZNF281 [49, 51-53]
miR-99a LC E2F2, ADGRE2 [29]
miR-125b HCC Smad2, Samd4, EVA1A [31, 114]
miR-125a-3p PC, EC, PRC Fyn, STAT3 [170, 141, 153]
miR-128-3p CRC Bmi1, MRP5 [165]
miR-129-5p BC, LC MCRS1 [89, 109]
miR-130a LC, HCC Smad4 [70, 115]
miR-134 CRC CREB1 [126]
miR-137 OC Snail [49]
miR-139-5p CRC, NPC BCL2 [127, 144]
miR-140 LC, GBM CTSB [86, 152]
miR-145 CRC Snail [32]
miR-146b LC PTP1B [71]
miR-155 LC, Smad2 [87]
miR-195-5p CRC GDPD5, Notch2 [128, 129]
miR-199a-5p BC PIK3CD [33]
miR-200 family OC, HCC, LC, GC, BC, PC NFATC1, CTSL, LIN28B, ERRFI1

ZEB1, ZEB2, ZNF17
[48, 54, 55, 85, 171,
172, 98, 81, 133]

miR-203 RCC, PRC, CRC, PC PTEN, Slug, ZEB1 [43, 44, 46, 47]
miR-204 BC, GC TGFBR2 [14, 99]
miR-205 BC, LC, NPC Notch2, PTEN [35, 73, 146]
miR-218 PRC Gli1, Slug [36, 71]
miR-221 EC DKK2 [143]
miR-296-3p LC, NPC PRKCA, MK2 [74, 145]
miR-363 OC Snail [173]
miR-374a NPC CCND1 [147]
miR-375 HCC c-Myc [117]
miR-451 LC c-Myc [75]
miR-452 BC Slug [37]
miR-483-3p LC ITGB3 [76]
miR-485-5p OSCC PAK1 [154]
miR-495 LC UBE2C [80]
miR-499a OS SHKBP1 [155]
miR-504 GBM FZD7 [38]
miR-508 CRC ZEB1, Bmi1, SALL4 [98]
miR-574-3p GC ZEB1 [96]
miR-612 HCC AKT2 [118]
miR-1247 PRC NRP1 [41]
miR-1294 OC IGF1R [103]
miR-3656 PC RHOF [135]
miR-4319 HCC FOXQ1 [42]
Let-7 OC, LC ABCC2, Bcl-xl [48, 51, 174]

(Continues)
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TABLE 1 (Continued)

miRNAs Cancer types Direct/indirect targets Reference
Oncogenic miRNAs
miR-10b BC PTEN, RBICC1 [57, 58]
miR-15b LC PEBP4 [94]
miR-17 GC DEDD [101]
miR-20a CC FBXL5, BTG3 [64]
miR-21 LC HBP1 [96]
miR-27a LC, HCC RKIP [95, 175]
miR-32-5p HCC PTEN [120]
miR-106b cluster BC EP300 [113]
miR-124 CRC PRRX1 [132]
miR-134 cluster LC MAGI2 [93]
miR-155 LC, GC, BC RHOA, GATA3, P53INP1, FOXO-3a [88, 161, 164]
miR-196a HCC NA [176]
miR-210 BC E-cadherin, Snail [59]
miR-221 PC SOCS3 [140]
miR-233 HCC Fbw7 [121]
miR-296-5p PC BOK [138]
miR-495 LC ETK [79]
miR-577 GC CAVIN2 [60]
miR-5188 HCC, BC FOXO1 [62, 63]

Abbreviations: BC, breast cancer; CC, cervical cancer; CRC, colorectal cancer; EC, esophageal cancer, GC, gastric cancer; GBM, glioblastoma; HCC, Hepatic car-
cinoma; LC, lung cancer; PC, pancreatic cancer; PRC, prostate cancer; NPC, nasopharyngeal cancer; OC, ovarian cancer; OS, osteosarcoma; OSCC, oral squamous
cell carcinoma; RCC, renal cell carcinoma.

promising approach in the treatment of cancer . In recent
years, a great many studies intensively examined miR-
NAs and they have helped us better understand the role
of miRNAs in the development, progression, and metas-
tasis of tumors. Nonetheless, we still have a long way to
go to fully elucidate the role of miRNAs in the develop-
ment of drug resistance of tumor cells. In view of a large
number researches of antitumor drugs, a database should
be set up to cover the myriad information about drug tar-
gets and miRNAs, even the whole non-coding RNAs to
provide support to researchers.In this review, we high-
lighted the pivotal part of miRNAs in EMT, cancer stem-
ness, and drug resistance. The relationship among them is
illustrated in Figure legends. Those EMT-associated miR-
NAs have showed complex functions in the regulation of
cancer stemness and drug resistance phenotype: They bind
to their targets and further impact the downstream path-
ways. (Table 1. The target of EMT-associated miRNAs in
different cancer types) Even the same miRNA plays an
opposite role in different cancer types.
Therefore, miRNAs can not only be used as potential

diagnostic or prognostic markers but also are of thera-
peutic value. Targeting miRNAs to antagonize certain
malignant properties of cancer may have more extensive
clinical implications. The miRNA-based therapies are still

confronted with some challenges, such as the off-target
effect and lack of an optimal delivering system. The in
vivo delivery of miRNAs remains a challenge due to their
speedy excretion, incorrect intracellular release, poor
biostability, endosomal escape, poor cellular ingestion,
and immunogenicity. Thus, miRNA-based therapeutics
will not be clinically available for cancer treatment until
these problems are fully resolved.
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