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Abstract 

Clinical practice has shown that Parkin is the major causative gene found in an autosomal recessive juvenile parkin‑
sonism (AR‑JP) via Parkin mutations and that the Parkin protein is the core expression product of the Parkin gene, 
which itself belongs to an E3 ubiquitin ligase. Since the discovery of the Parkin gene in the late 1990s, researchers 
in many countries have begun extensive research on this gene and found that in addition to AR‑JP, the Parkin gene 
is associated with many diseases, including type 2 diabetes, leprosy, Alzheimer’s, autism, and cancer. Recent studies 
have found that the loss or dysfunction of Parkin has a certain relationship with tumorigenesis. In general, the Parkin 
gene, a well‑established tumor suppressor, is deficient and mutated in a variety of malignancies. Parkin overexpres‑
sion inhibits tumor cell growth and promotes apoptosis. However, the functions of Parkin in tumorigenesis and its 
regulatory mechanisms are still not fully understood. This article describes the structure, functions, and post‑transla‑
tional modifications of Parkin, and summarizes the recent advances in the tumor suppressive function of Parkin and 
its underlying mechanisms.
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Background
Parkin gene, also called PARK2, is located on chromo-
some 6q25.2-q27, contains 12 exons, and has a length of 
about 1.5 Mb [1]. It is widely expressed in various tissues 
and is mainly found in the brain and muscles [2]. Since 
1998, Kitada et al. [3] were the first to discover the Par-
kin gene mutation in a Japanese family diagnosed with 
Parkinson. To date, many studies have confirmed that 
Parkin has very broad roles, in addition to Parkinson’s 
disease, and is also associated with many diseases, such 
as type 2 diabetes, Alzheimer’s disease, multiple sclerosis 
[3–6]. There is a certain correlation between Parkin and 
the occurrence and development of tumors according to 
genetic studies of many cancer patients. Many studies 
have shown that the in vivo loss of chromosomal region 

fragments is associated with malignant tumors, such as 
p53, Rb fragments and fragile sites [2]. The Parkin gene is 
located near the fragile site FRA6E [3]. FRA6E is located 
in an unstable region on chromosome 6q26, which is sus-
ceptible to mutate under external stimuli and then pro-
motes tumor formation in normal cells [3]. Parkin is also 
a class of molecules that exhibits high variability under 
different signal induction. Various stimuli can modulate 
Parkin’s activities through different post-translational 
modifications [7] which play a very important role in life 
activities. Through the post-translational modification, 
the structure of the protein becomes more complicated, 
the function is enhanced, the regulation is more refined, 
and the effect is more distinctive [8]. Recent studies have 
demonstrated that the expression level of Parkin is low 
in cancers and its dysfunctions or loss has certain rela-
tionships with many cancers [4]. Therefore, an in-depth 
study of Parkin to clarify its connection with cancers will 
help provide new drug targets and strategies for cancer 
treatment.
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Overview: structure, regulation, and functions 
of Parkin
Structural domains of Parkin
The Parkin gene encodes 465 amino acids to form a pro-
tein with a molecular weight of about 52 kDa, namely the 
Parkin protein [3]. Parkin is a multi-domain protein, and 
its C-terminus consists of the ring structure (RING1 and 
RING2) on both sides and the in-between RING (IBR) in 
the middle to form the RING1-IBR-RING2 structure [3, 
9, 10]. In the N-terminal ubiquitin-like domain (UBL), 
there are 76 amino acids homologous to ubiquitin, which 
is a ubiquitin-like structural region with a typical ubiq-
uitin folding [3], so Parkin protein is considered to be 
involved in the activities of ubiquitin–proteasome system 
(UPS) as E3 ubiquitin ligase [11] (Fig. 1a, b).

Functions of Parkin
Parkin has E3 ubiquitin ligase activity
Ubiquitination refers to the process in which ubiquitin 
molecules classify proteins in cells under the action of E1, 
E2 and E3 enzymes, select target protein molecules, and 
specifically modify target proteins [3, 8]. In addition to 
degradation by the proteasome, ubiquitination can also 
act as a signal for autophagy degradation by lysosomes 
and alter the activity or location of the substrate protein 
[12]. As an E3 ligase, Parkin can ubiquitinate the sub-
strate delivered by E2 binding enzyme and further deliver 

the ubiquitinated substrate to the proteasome, which is 
degraded into small molecules by proteasome action for 
recycling of intracellular substances [2], including syn-
philin-1, cyclin E, P38 tRNA synthetase, SP22 (22-kDa 
glycosylated form of α-synuclein), and more [8] (Fig. 2a).

The role and mechanism of Parkin in mitochondrial 
autophagy
Mitochondrial autophagy is a physiological process that 
removes damaged or excessive mitochondria through a 
degradation pathway in autophagosomes [13]. The Par-
kin/PTEN-induced kinase 1 (PINK1) pathway is the most 
typical mitochondrial autophagy pathway [14]. In dam-
aged mitochondria, depolarization of the mitochondrial 
membrane results in the immobilization of PINK1 on the 
outer membrane of the mitochondria and activation by 
autophosphorylation [15]. Activated PINK1 phosphoryl-
ates many substrates, including Parkin and ubiquitin, and 
experiments have shown that the combination between 
phospho-ubiquitination (p-Ub) and phosphorylated 
Parkin has a high affinity that causes Parkin to produce 
a conformational change. As a result, the recruitment 
of E2 is promoted, thus activating Parkin [16]. Parkin 
rapidly catalyzes the ubiquitination of large amounts of 
mitochondrial proteins, followed by ubiquitinated mito-
chondrial proteomes linked to autophagic machinery and 
initiation of selective autophagy [17] (Fig. 2b).

Fig. 1 The two‑dimensional structure and three‑dimensional structure of human Parkin. a The two‑dimensional structure of the Parkin protein, the 
letters in the column indicate the domain. b Three‑dimensional structure of Parkin protein, based on the datasets in cBioPortal (http://www.cbiop 
ortal .org). UBL ubiquitin‑like domain, RING loop finger domain, IBR in‑between RING, cysteine‑rich domain, REP repressor element of RING

http://www.cbioportal.org
http://www.cbioportal.org
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In addition to PINK1/Parkin-mediated mitochon-
drial autophagy, autophagy-mediated by the B-cell lym-
phoma-2 (Bcl-2) and adenovirus E1B 19 kDa-interacting 
protein 3 (BNIP3) and NIP3-like protein X (NIX) signal-
ing pathways also plays a key role in autophagy [18, 19]. 
Studies have found that BNIP3 and NIX can directly link 
to the microtubule-associated protein light chain 3 (LC3) 
protein and recruit autophagosomes to degrade targeted 
proteins and NIX can also directly modulate ubiquit-
ination of Parkin substrates to mediate mitochondrial 
autophagy [19]. However, whether PINK1/Parkin-medi-
ated mitochondrial autophagy pathway is associated with 
this pathway will be a new field for future studies of mito-
chondrial autophagy.

Parkin as an important monitoring system in the cell
When intracellular proteins are misfolded, the ubiqui-
tin–proteasome system can remove or degrade these 
proteins in time, thereby effectively reducing the cyto-
toxic load caused by excessive accumulation of mis-
folded proteins [3, 7] (Fig.  2c). This mechanism has 

important protective effects on cells. When the endo-
plasmic reticulum undergoes a stress response, the 
protein is unfolded or misfolded, and Parkin’s E3 ubiq-
uitin ligase activity is lost, resulting in the accumula-
tion of a large number of mitochondrial proteins and 
many other substrates, and ultimately induces endo-
plasmic reticulum stress-mediated cell death [3, 4]. 
For instance, regarding the Peal receptor protein, stud-
ies have confirmed that it has dopamine neurotoxicity, 
which can cause stress in endoplasmic reticulum and 
cytoplasm of the cell, thereby inducing dopaminergic 
neurons death in the substantia nigra of the brain [20]. 
The inactivation of Parkin protein magnifies these dam-
aging effects. Parkin proteins are dephosphorylated and 
more active when cells are exposed to stress caused by 
Parkinson’s disease-associated folding proteins [21]. 
Phosphorylation and dephosphorylation of Parkin can 
rapidly and efficiently regulate its functions and activi-
ties when proteins are misfolded or threatened by cell 
survival.

Fig. 2 Function of Parkin. a Proteasome degradation pathway. b Pathway of PINK1 activation of Parkin leading to autophagy of depolarized 
mitochondria. c Degradation pathway of unfolded or misfolded proteins. ub ubiquitin, OMM outer mitochondrial membrane, P phosphorylation, 
CCCP carbonyl cyanide 3‑chlorophenylhydrazone
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Post‑translational modification of Parkin
Post-translational modification (PTM) is a fundamental 
process to regulate protein functions [7]. Different types 
of modifications affect the conformation and stability 
of the protein and ultimately its function [22, 23]. Phos-
phorylation, methylation, ubiquitination, acetylation, 
sumoylation, neddylation, glycosylation and sulfation are 
all common post-translational modifications of proteins 
(Table  1). Parkin’s activity can be regulated by various 
types of PTM, for example, phosphorylation, ubiquitina-
tion, sumoylation and neddylation [24, 25]. These revers-
ible PTMs cause Parkin to translocate, affecting its DNA 
binding affinity, and altering the transcriptional activity 
pattern of a particular target gene locus [26]. When cells 
are subjected to environmental stress or signal stimula-
tion, certain functions can be obtained or lost through 
specific post-translational modification, thereby produc-
ing specific effects [27].

Parkin’s post-translational modifications do not exist 
in isolation, but rather have intricate connections with 
each other, forming a complex post-translational modi-
fication control network. The phosphorylation of Parkin 
not only inhibits ubiquitination but also acetylation [7, 
28]. Therefore, Parkin may have some post-transcrip-
tional modifications, and no interactions between vari-
ous modifications have been detected. The importance of 
these modifications in specific tumorigenesis remains to 
be elucidated.

Mechanism of Parkin activation by phosphorylation
Different protein kinases can recognize and modify dif-
ferent sites of different proteins, which expands the 
complexity of phosphorylated protein research [29]. The 
molecular mechanisms of protein phosphorylation have 
considerable guiding significance for the study of major 
diseases such as cancer and have become one of the hot-
spots in the field of biology. The primary mechanism 
for modulating Parkin activity and its target genes is to 

control Parkin’s translocation between the nucleus and 
cytoplasm by phosphorylation of a series of kinases [30]. 
There are a variety of proteins involved in Parkin phos-
phorylation, of which PINK1 is the most studied protein 
[31, 32]. Kim et  al. reported that Parkin’s activity and 
mitochondrial localization depended on PINK1 kinase-
activity [32]. Two research reports [33, 34] also indicated 
that Parkin translocation and stress-induced mitochon-
drial autophagy requires the PINK1-dependent phospho-
rylation of Ser65 in the UbL domain [35]. The initiation 
of phosphor-ubiquitin makes Parkin easier to PINK1-
mediated Ser65 phosphorylation [36]. So, in a nutshell, 
the phosphorylation of PINK1 is necessary for Parkin 
activation and target recognition [14, 36, 37].

Parkin’s ubiquitination and deubiquitination
Protein ubiquitination is a fundamental post-transla-
tional modification that controls cell fate and function 
[7]. It has been reported that Parkin mediates its own 
ubiquitination through K48 protein-dependent ubiqui-
tin chain formation, thereby affecting the stability of its 
own proteins [7, 38]. Durcan and colleagues identified 
the deubiquitinating enzyme (DUB) Ataxin-3 as a ligand 
for Parkin, which interacts with Parkin’s UbL and IBR-
RING2 domains and promotes Parkin’s β-dimerization 
[39]. Mutant Ataxin-3, a polyglutamine dilatation associ-
ated with the onset of Machado-Joseph neurodegenera-
tive disease, promotes Parkin degradation by autophagy 
and leads to a decrease in Parkin levels in in vivo [40]. In a 
subsequent study, it was shown that Ataxin-3 binds to the 
E2 ubiquitin ligase Ubc7 instead of Parkin and promotes 
Parkin de-ubiquitination only when Parkin itself is ubiq-
uitinated [41]. Collectively, these highlight the complex 
regulation of Parkin ubiquitination, involving the coor-
dinated activities of Parkin, DUB and E2 ubiquitin ligase 
[42, 43]. It is known that when Parkin is ubiquitinated 
in cells, it degrades in a proteasome-dependent manner, 
effectively inactivating Parkin [44]. In conclusion, the 

Table 1 The type of post‑translational modification that Parkin participates in and its biological function

Post-translational 
modification type

Modification site Modification of related enzymes Biological functions

Phosphorylation Serine, threonine, tyrosine Protein kinase, protein phosphatase Signal transduction, cell cycle, growth and devel‑
opment, cancer mechanism

Ubiquitination Lysine Ubiquitin activating enzyme, binding enzyme, 
ligase and degrading enzyme, ubiquitin‑spe‑
cific protease

Cell proliferation, apoptosis, DNA damage repair, 
Immune response

Sumoylation Lysine SUMO‑specific protease Mitochondrial division, DNA damage repair, 
genomic stability

Neddylation Lysine NEDD8 activating enzyme, Cullin E3 enzyme Cell cycle, signal transduction, apoptosis

S‑Nitrosylation Cysteine Nitric oxide synthase Apoptosis, inflammatory response, immunosup‑
pression
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ubiquitination process involved in Parkin protein plays a 
key role in protein localization and degradation [45].

Sumoylation modification
In recent years, many proteins similar to ubiquitin 
sequences have been discovered, one of which is the 
ubiquitin-related analogue SUMO (small ubiquitin-
related modification) [46]. SUMO is a highly conserved 
family of proteins widely found in eukaryotes. There are 
three SUMO genes in vertebrates called SUMO-1, -2, -3, 
which are very similar to ubiquitin in secondary struc-
ture and catalytically modified [46, 47]. This modification 
plays an important role in stabilizing protein conforma-
tion and regulating protein subcellular localization [7, 
48]. Studies have shown that non-covalent binding of 
Parkin protein to SUMO-1 enhances Parkin’s nuclear 
translocation and increases its own ubiquitination, 
but no significant Parkin protein level difference was 
detected after the overexpression of SUMO-1, indicating 
that an increase in autoubiquitination activity does not 
necessarily result in the protease-dependent degradation 
of Parkin [48]. Therefore, a positive regulator of Parkin, 
such as SUMO-1, may simply disintegrate the self-inhib-
iting conformation of Parkin protein or enhance the 
binding of E2 to the substrate without causing degrada-
tion of the Parkin protein [49], thereby causing apoptosis 
of cancer cells. Recent studies have found that sumoyla-
tion is also involved in the repair of DNA damage and the 
regulation of mitochondrial division, genomic stability, 
ion channels, and biological rhythms. In addition, disor-
ders of the SUMO-modifying function can cause certain 
diseases to occur [49]. The function of many oncogenes 
and tumor suppressor genes is regulated by SUMO 
modification, such as P53, IRF-1 (interferon regulatory 
factor 1) [46]. Studies have shown that SUMO1 modifica-
tion can inhibit the activity of the P53 gene and promote 
the occurrence, development, and metastasis of cancer 
[50, 51]. IRF-1 is a tumor suppressor and inhibits phe-
notypic changes. The SUMO modification level of IRF-1 
was significantly increased in tumor cells by screening for 
SUMO protein. SUMO modification of IRF-1 increases 
the stability of this protein in tumors [52].

Neddylation modification
Neural precursor cell-expressed developmentally down-
regulated 8 (NEDD8) is a class of molecules with similar 
structure to ubiquitin proteins, called neddylation, which 
can be involved in the post-translational modification 
of proteins. Like ubiquitin, NEDD8 is also expressed in 
most tissue types [53, 54]. Recent studies have shown 
that protein neddylation modification abnormalities are 
closely related to the occurrence and development of a 
variety of tumors [55]. Enzymes involved in neddylation 

modification are higher in tumors than normal adjacent 
tissues. Neddylation modification has become a new anti-
tumor therapeutic target that can exert its anti-tumor 
effect by ubiquitin ligase regulating the neddylation mod-
ification process [55, 56]. Studies have shown that Parkin 
binds to the ubiquitin-like protein NEDD8 [57], indicat-
ing that NEDD8 is linked to Parkin to increase E3 ligase 
activity by increasing the affinity to E2 ubiquitin ligase 
Ubiquitin-conjugating Enzyme H8 (UbcH8) and puta-
tive substrate aminoacyltransferase p38 subunit, thereby 
inhibiting the development of the tumor. Walden et  al. 
reported that neddylation enhanced the interaction of 
Parkin with UbcH8 and its putative substrate, the p38 
subunit of the amino acyltransferase, which enhances 
the activity of ubiquitin ligase [11]. Nedd8 is capable of 
bidirectional regulation of ubiquitination. When Nedd8 
modifies the Cullin E3 enzyme by neddylation, it changes 
its enzyme configuration, making E3 easier to bind to the 
E2 binding enzyme, and the ubiquitination-modifying 
enzyme activity of E3 is promoted [53]. However, when 
neddylation competes with the ubiquitination modifi-
cation for the same modification site, it can also inhibit 
the ubiquitination of the substrate. RING box proteins 
(RBXs), a component of the ubiquitin ligase Cullin-RING 
complex, is the most studied neddylation modified ligase, 
and further studies have found that ubiquitin ligases 
MDM2 (murine double minute 2), Smurf1 (Smad ubiq-
uitin regulatory factor 1) and NEDL2 (NEDD4-like ubiq-
uitin ligase 2) can also act as neddylation modified ligases 
[7].

Parkin protein S-nitrosylation and cancers
S-nitrosylation is a reversible post-translational modifi-
cation involving the covalent attachment of a NO (nitric 
oxide) group to a cysteine residue to form an S-nitroso-
thiol species that stabilizes the structure of the protein 
[58, 59]. Numerous studies have shown that abnormal 
S-nitrosylation is associated with the development and 
progression of cancer and the response to certain thera-
pies [58]. S-nitrosylation abnormalities are key events 
in cancer episodes and may significantly increase cancer 
risk [60]. S-nitrosylation regulates the biological activities 
of a variety of proteins in the body and is involved in key 
processes in the cell life cycle, including transcriptional 
regulation, DNA repair and apoptosis [58, 60]. Parkin is 
rich in cysteine and coordinates 8 zinc atoms to ensure 
proper folding of Parkin. Therefore, the S-nitrosylation 
of any zinc-coordinated cysteine affects Parkin’s func-
tion [61]. However, it is controversial that S-nitrosylation 
regulating Parkin’s function. On one hand, the effect of 
S-nitrosylation on the mitochondrial degradation of 
Parkin function in human neuroblastoma cells (SH-
SY5Y) by Ozawa group [62] found that S-nitrosylation 
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of Parkin protein increases E3 ligase activity after mito-
chondrial depolarization to induce mitochondrial aggre-
gation and degradation, in addition, Cys323 in Parkin 
is S-nitrosylated key site. On the other hand, Ted Daw-
son’s team [58] found that the degree of S-nitrosylation 
of parkin protein was increased in the human brain and 
the S-nitrosylation of Parkin protein attenuated E3 ligase 
activity after mitochondrial depolarization. In addition, 
studies have demonstrated that the functional regula-
tion of Parkin protein S-nitrosylation is bidirectional and 
undergo self-ubiquitination. S-nitrosylation will increase 
first and then decrease [58]. Therefore, the specific mech-
anism by which S-nitrosylation regulates Parkin’s func-
tion requires further study.

Parkin’s relationship with cancer and its regulatory 
mechanism
Tumor suppressor gene—Parkin
There is increasing evidence that Parkin is a tumor sup-
pressor, mutations in the Parkin gene have been reported 
in many cancers, although the frequency of these muta-
tions is relatively low [4]. Analyses of the database from 
cBioportal (http://www.cbiop ortal .org) indicate that Par-
kin gene mutation rate is ~ 5% in cervical cancer, ~ 5% in 
lung squamous cell carcinoma, and 2%–6% in colorectal 
cancer [63]. Studies have confirmed that Parkin’s deletion 
of the long arm of chromosome 6 is associated with sev-
eral solid tumors, including ovarian cancer, breast cancer, 
kidney cancer, lung cancer, melanoma, and hematologi-
cal cancer [4]. A number of missing regions were identi-
fied by analysis of 6q21-q23, 6q25.1-q25.2, and 6q25-q27. 
In addition, a loss of 6q27 was found in benign ovarian 
tumors. Later studies identified a homozygous deletion 
of exon 2 in lung adenocarcinoma [4, 64]. Parkin’s loss of 
heterozygosity and loss of copy number were observed 
in breast cancer [65]. With in-depth studies on Parkin, it 
was found that its overexpression inhibits the prolifera-
tion of cancer cells, while Parkin’s inactivation promotes 
the proliferation of cancer cells, demonstrating that Par-
kin acts as a tumor suppressor [63, 66]. Parkin gene dele-
tions and mutations often occur in lung cancer, and the 
inactivation of the Parkin gene increases the incidence 
of lung cancer. By analyzing the cancer genome map, it 
was found that about one-quarter of the glioblastoma 
samples had heterozygous or homozygous loss of the 
Parkin gene and point mutation [67]. Experiments have 
shown that mice lacking the Parkin gene are more prone 
to pancreatic cancer [68]. The reduction of the Parkin 
gene enhances the proliferation and migration of pancre-
atic cancer cells. When the Parkin gene is overexpressed, 
the migration and invasion ability of cancer cells is weak-
ened, indicating that Parkin has the potential to inhibit 

pancreatic cancer, and its expression level is positively 
correlated.

Parkin-mediated tumor suppression and underlying 
mechanisms
Anti‑apoptosis
Apoptosis is the balance between multicellular organ-
isms to maintain cell stability. The active physically death 
process of cells controlled by genes is a natural obsta-
cle to the development of cancer [3, 17]. Recent stud-
ies have found that Parkin seems to promote cancer cell 
apoptosis. Parkin has been reported to induce apoptosis 
by promoting mitochondrial depolarization [69]. Parkin 
promotes the ubiquitination and degradation of myeloid 
cell leukemia-1 (Mcl-1), a member of the B-cell leukemia/
lymphoma 2 (Bcl-2) family, and open the Bax/Bak chan-
nel, making cells sensitive to apoptosis [69]. In the Michi-
gan Cancer Foundation 7 (MCF7) human breast cancer 
cells, Parkin binds to the outer surface of microtubules 
to increase the interaction of paclitaxel with microtu-
bules, increasing cell sensitivity to apoptosis [70]. Parkin 
also promotes histone deacetylases (HDAC) inhibitors to 
induce apoptosis in hepatocellular carcinoma through a 
mechanism that is poorly understood. In conclusion, Par-
kin can promote cancer cell apoptosis through different 
pathways.

Anti‑cell proliferation
The ability to maintain chronic proliferative signals is the 
most important feature of cancer cell survival. Previous 
studies have shown that Parkin plays an important role 
in inhibiting cell cycle progression. Parkin regulates the 
stability of G1/S cyclins and maintains the coordination 
of different cyclins, thus acts as a major regulator of the 
cell cycle. Interestingly, Parkin’s loss is mutually exclusive 
with the amplification of cyclin D1, cyclin E1 [60, 71] and 
cyclin-dependent kinase 4 (CDK4) genes, suggesting that 
Parkin and these cell cycle components interact in a com-
mon pathway [72]. In MCF7 breast cancer cells, Parkin is 
reported to regulate the mRNA levels of CDK6 (cyclin-
dependent kinase 6) [11], which leads to cell cycle arrest 
and growth inhibition [73]. Thus, Parkin mutation abol-
ishes its ligase activity and impairs its ability to ubiquit-
inate cyclins, which in turn leads to amplification of G1/S 
[72] phase cyclin turnover, hyperproliferative signaling 
and ultimately cancer [74].

Anti‑cell metastasis
Tumor invasion and metastasis are the most critical 
steps in defining the aggressive phenotype of human 
cancer [75]. As a potential tumor suppressor protein, 
the increased expression of Parkin may be related to 
the viability of invasion and metastasis. Parkin helps 

http://www.cbioportal.org
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microtubule polymerization through its three sepa-
rate microtubule/tubulin-binding domains and cooper-
ates with paclitaxel treatment to increase their stability 
[63]. In breast cancer, a decrease in Parkin’s cytoplasmic 
expression may be helpful in predicting paclitaxel treat-
ment outcomes [73]. In addition, it was found that when 
parkin is overexpressed, the migration and invasion abil-
ity of various cancer cells is weakened [73]. Since micro-
tubule dynamics are closely related to cell migration and 
metastasis, Parkin has some negative regulation on can-
cer cell metastasis through its microtubule-stabilizing 
activity [76]. Collectively, these studies demonstrated the 
potential role of Parkin in the tumor microenvironment 
[63].

Anti‑angiogenesis
Cancer cells require adequate nutrition and oxygen to 
maintain and assess the ability to metabolize waste. To 
achieve this, as early as 1971, American scholar Folk-
man put forward the theory that “tumor growth depends 
on angiogenesis” [77]. Vascular endothelial growth fac-
tor (VEGF) is one of the most potent stimulating factors 
found in angiogenesis, affecting endothelial cell prolifera-
tion, motor and vascular permeability [78, 79]. Interest-
ingly, it was observed that Parkin significantly affected 
the expression of vascular endothelial growth factor 
receptor-2 (VEGFR-2). In U87-Parkin cells (Glioma cells 
stably expressing Parkin), the expression of VEGFR-2 was 
found to be nearly 4-fold lower than the control group 
[11]. In most invasive tumors, the production and secre-
tion of VEGF are usually observed, a phenomenon that 
seriously affects the prognosis of cancer patients [80]. In 
a study of glioma cells, the negative relation between Par-
kin function and VEGFR-2 has been shown to be a key 
factor in promoting angiogenesis. Thus, Parkin-mediated 
inhibition of glioma cell proliferation involves the regula-
tion of the VEGFR-2 pathway [11].

Anti‑inflammation
How inflammation induces tumors is an important sci-
entific issue in the international frontier. Previous stud-
ies have demonstrated that many tumors are induced by 
inflammation [81]. Inflammatory mediators cause genetic 
and epigenetic changes such as DNA methylation, tumor 
suppressor gene point mutations, and post-translational 
modifications, which cause changes in intracellular 
homeostasis and occurrence of tumors [81, 82]. With 
in-depth research, inflammatory mediators involved in 
the occurrence and development of tumors have been 
identified [83]. The expression of inflammatory markers 
interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-
α) was abnormally increased in Parkin-deficient cells [84, 
85], while IL-6 level was significantly higher in Parkin 

knocked-out mice than in wild-type [67]. A recent study 
has suggested that inflammation and genomic instabil-
ity caused by Parkin deficiency may be a trigger in lung 
cancer [86]. In the absence of any stimulation, a decrease 
in Parkin expression leads to an increase in nuclear fac-
tor kappa B (NF-κB) localization [67]. NF-κB is a widely 
expressed transcription factor that induces cytokine and 
immunoglobulin gene expression in chronic obstructive 
pulmonary disease-associated inflammation [86]. These 
results proved that Parkin has anti-inflammatory proper-
ties, while Parkin deficiency may aggravate inflammation.

Conclusions and perspectives
In recent years, evidence from cultured cells and Parkin 
knockout mice experiments, as well as clinical studies 
have shown that Parkin is an important tumor suppres-
sor that is abnormally expressed in many malignancies, 
including colorectal cancer, lung cancer, and endometrial 
cancer [7]. As a tumor suppressor gene, little is known 
about the way that parkin inhibits tumor growth, as well 
as the mechanisms of the parkin promoter region meth-
ylation and parkin mutation leading to tumorigenesis.

The role of Parkin in Parkinson’s disease has been 
established, and the association between Parkinson’s dis-
ease and cancer risk seems complicated, and many epi-
demiological studies have shown a connection between 
Parkinson’s disease and the risk of developing gastric can-
cer, uterine cancer, lung cancer, and breast cancer [87]. 
Previous studies have shown that the incidence of most 
cancer in Parkinson’s patients is lower than in patients 
without Parkinson’s disease [55, 58]. In patients with 
Parkinson’s disease, the risk of smoking-related cancer is 
reduced, such as lung cancer, bladder cancer, and laryn-
geal cancer [5]. However, the risk of malignant melanoma 
and breast cancer in patients with Parkinson’s disease has 
increased significantly [55]. Therefore, future research 
should consider whether the risk of cancer in patients 
with Parkinson’s disease is higher than in patients with 
non-Parkinson’s disease, and the potential roles of Parkin 
mutations in regulating the relationship between Parkin-
son’s disease and cancer risk.

Post-translational modifications can control the activ-
ity, conformation, solubility, and cofactor interactions 
required for Parkin activation, substrate affinity and spec-
ificity. When cells are subjected to environmental stress 
or changes in the internal environment, post-transla-
tional modifications can occur rapidly to regulate various 
activities of the cell. In recent years, researchers in many 
countries have been focusing on the role of Parkin as a 
tumor suppressor [65]. However, little is known about 
post-translational modifications of Parkin participates 
in the development of tumors. Future research should 
explore the effects of post-translational modification on 
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tumors and whether it can be used as a new approach to 
prevent tumorigenesis by regulating post-translational 
modification of Parkin.
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