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Abstract 

Tumor immune microenvironment is closely related to tumor initiation, prognosis, and response to immunotherapy. 
The immune landscapes, number of infiltrating immune cells, and the localization of lymphocytes in the tumor vary 
in across different types of tumors. The immune contexture in cancer, which is determined by the density, composi‑
tion, functional state and organization of the leukocyte infiltrate of the tumor, can yield information relevant to the 
prediction of treatment response and patients’ prognosis. Better understanding of the immune atlas in human tumors 
have been achieved with the development and application of single‑cell analysis technology, which has provided a 
reference for prognosis, and insights on new targets for immunotherapy. In this review, we summarized the different 
characteristics of immune contexture in cancer defined by a variety of single‑cell techniques, which have enhanced 
our understanding on the pathophysiology of the tumor microenvironment. We believe that there are much more to 
be uncovered in this rapidly developing field of medicine, and they will predict the prognosis of cancer patients and 
guide the rational design of immunotherapies for success in cancer eradication.
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Introduction
Tumor microenvironment (TME) is the cellular envi-
ronment in which tumor cells reside. It is composed 
of various stromal cell types, including immune and 
inflammatory cells, adipocytes, fibroblasts, vascular 
endothelial cells, which are surrounded by intercellular 
interstitial, microvascular and infiltrating molecules. In 
the past, the understanding of tumor heterogeneity was 
mainly focused on tumor cells. Cancer-associated stro-
mal cells including immune cells and fibroblasts in the 
TME have been identified to be highly heterogeneous 
in recent studies [1, 2]. Among them, the T cells, B cells, 
natural killer (NK) cells, and other types of lymphocytes, 
which also have important roles in the tumor immune 

microenvironment (TIME), have been the main research 
hotspots in recent years [1, 2].

Tumor immune contexture refers to the spatial organi-
zation and density of the immune infiltrate in the TME 
[3]. TIME is usually associated with the clinical outcome 
of cancer patients, and has been used for estimating can-
cer prognosis [3]. For instance, the infiltration of large 
numbers of cluster of differentiation 8 positive  (CD8+) 
cytotoxic T cells, type 1 T helper (Th1) cells, and associ-
ated cytokines in TME usually indicate that the immune 
system can inhibit tumors to some extent, suggesting 
the existence of a robust antitumor milieu that can lead 
to eradication of tumors [4]. Therefore, researchers have 
uncovered potentially targeted features of the tumor 
immune contexture, among which the programmed cell 
death ligand-1/programmed cell death protein-1 (PD-L1/
PD-1) axis have been particularly attractive [5].

The highlight of the single cell analysis technique is the 
use of multiple parameters to analyze individual cells, 
which can reveal the heterogeneity and homogeneity of 
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cells. In the emerging single cell protein detection tech-
nologies, mass cytometry is the most representative one, 
as it can detect dozens of proteins on a single cell simulta-
neously [6, 7]. In addition, the next-generation sequenc-
ing technology including single cell genomics and single 
cell transcriptomics made it possible to identify and char-
acterize the cell types in heterogeneous tissues [8]. Both 
the heterogeneity of cells in one tumor sample and the 
different characteristics of immune contexture between 
distinct tumor samples can reflect the heterogeneity 
of clinical samples. Single cell analysis can also be very 
convenient for comparing samples from different can-
cer patients to find specific differences in tumor immune 
contexture. Better understanding on the pathophysiology 
of the tumor microenvironment by single cell technology 
will predict the prognosis of cancer patients and guide 
the rational design of immunotherapies for success in 
cancer eradication. These data can be used as an impor-
tant basis for individualized treatment. In this review, 
we summarize the diverse immune contexture in several 
types of tumors revealed by single cell analysis technol-
ogy, and provide new strategies for prognosis prediction 
and immunotherapy guidance in cancer.

Respiratory tumor
Immune contexture
Small cell lung cancer and non-small cell lung cancer 
(NSCLC) are the two main histological types of lung can-
cer. NSCLC accounts for 85% of lung cancers and used 
to be subdivided into lung squamous cell carcinoma and 
adenocarcinoma [9–11]. In lung cancer, greater focus has 
been placed on tumor-infiltrating lymphocytes (TILs) as 
they have been found to be able to directly affect prog-
nosis and the response to immunotherapy [12–14]. The 
TIME of lung cancer is mainly composed of T cells, mac-
rophages, and mast cells [11, 15–17]. In NSCLC, the 
number of  CD8+ cells,  CD4+ cells, T cells, and B cells 
are increased in tumor tissues as compared to normal 
lung tissues [18], among which the increase of B cells 
was found to be the most distinct [9]. Recently, Lavin 
et  al. [19] have found that there are notable alterations 
of T cells and NK cells in lung adenocarcinoma. Moreo-
ver, considerable changes in tumor-infiltrating myeloid 
(TIM) cells have been identified to weaken the T cells-
mediated anti-tumor immunity and promote tumor pro-
gression [20, 21]. Dendritic cells (DCs) were found to be 
the most important components among TIM to induce 
the activation of T cells [22, 23], and  CD103+ DCs were 
shown to drive  CD8+ T cells activation [23–26]. Com-
pared with the patients with high  CD8+ T cells but low 
DCs density in their tumor mass, NSCLC patients with 
high level of both  CD8+ T cells and DCs had significantly 
better survival rate [27]. It has been found early lung 

adenocarcinoma lesions have significantly reduced NK 
cell compartments [19, 28]. Furthermore, changes in TIM 
subsets may compromise anti-tumor T cell immunity 
[19, 28]. Regulatory T cells (Tregs) with highly expressed 
markers including CD39, cytotoxic T lymphocyte anti-
gen 4 (CTLA-4), CD137, and inducible T cell costimu-
latory (ICOS) were found observably increased in lung 
tumor [19]. Besides, macrophages in lung tumors also 
had unique characteristics compared with those in nor-
mal lung tissues, which were characterized by high-level 
expression of CD64, peroxisome proliferator-activated 
receptor γ (PPARγ), CD14, CD11c and low-level expres-
sion of CD86 and CD206 [19].

The role of TILs
TILs are T cell populations with higher specific immune 
response to tumor cells than non-infiltrating lympho-
cytes [29, 30]. TILs are divided into three subtypes: epi-
thelial lymphocytes within the cancer cell nests, stromal 
lymphocytes in the central cancer stroma, and peritu-
moral lymphocytes along the invasive margin [31]. The 
role of TILs in promoting or inhibiting tumor progres-
sion has not yet been determined [32]. Generally, TILs 
are closely related to the clinical outcomes of cancer [33]. 
The subset, location, and density of TILs can be used to 
predict the overall survival (OS) and progression-free 
survival (PFS) of lung cancer patients, using immu-
noscore strategy [34, 35]. These cells infiltrated in tumor 
epithelium or stroma play an active role in inhibiting the 
progression and metastasis of tumors. Studies have found 
that high infiltration of  CD3+ cells in tumor epithelium 
and stroma suggest a better OS, while high infiltration 
of forkhead box P3 positive  (FOXP3+) T cells in tumors 
was associated with poor prognosis [36]. Fas/Fas ligand 
(Fas/FasL) pathway disorder has been reported to induce 
malignant lung cells to evade the killing effect of cyto-
toxic T cells and thus resist the immune system [37, 38]. 
Recent studies have shown that NSCLC patients with low 
ratio of  CD4+/CD8+ in peripheral blood T cells may have 
better prognosis [39]. The response of NSCLC patients 
to platinum neoadjuvant chemotherapy can be predicted 
by the density of  CD8+ and  FOXP3+ TILs in TIME [40]. 
In addition, the expression levels of inhibitory receptors 
such as T-cell immunoglobulin and mucin-domain con-
taining-3 (TIM-3), lymphocyte-activation gene 3 (LAG-
3), PD-1, and CTLA-4 in  CD4+ or  CD8+ T cells can be 
applied to predict the response to lung cancer immuno-
therapy [40–42].

Immunotherapy
In the past decades, chemotherapy has been regarded as 
the standard treatment for lung cancer, but the therapeu-
tic effect has been limited. The emergence and clinical 
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application of immunotherapy have brought hope to 
countless patients by improving their PFS and OS rate. 
Tumor cells can suppress the immune system by activat-
ing immune checkpoints to achieve immune escape [43]. 
Among the immune checkpoints, PD-1 and CTLA-4 
expressed by T cells and PD-L1 expressed by tumor 
cells have been the most studied. Immune checkpoint 
inhibitors are antibodies interacting with these immune 
checkpoint proteins to relieve immunosuppression and 
they have been used in patients with NSCLC. Studies 
have found several factors that can affect the response 
to immunological checkpoint therapy including tumor 
antigens (e.g. neoantigens, tumor mutation burden, 
microsatellite instability) [44], immunosuppressive and 
inflammatory cells or proteins (e.g. TILs and tumor-
associated immune cells, gene signatures, CTLA-4, IDO, 
PD-L1) [45], and host factors (single-nucleotide poly-
morphisms and microbiome) [46]. These indicators can 
be used to predict the effectiveness of immunotherapy 
for patients. Clinical trials of anti-PD-1 or anti-PD-L1 
combined with anti-CTLA-4 drugs for NSCLC have been 
carried out, and positive results have been preliminarily 
obtained which mainly reflected in a higher OS rate and 
durable responses [47].

Digestive system tumors
Immune contexture
Single cell technology can also be applied to analyze 
the immune microenvironment of the digestive sys-
tem. Zheng et  al. [48] used single-cell sequencing to 
analyze T cell populations and depicted a distinc-
tive immune landscape of liver cancer. They found 
fewer  CD8+ T cells in the center of the tumor than in 
the outer cortex. The proportion of  CD4+  CD25high T 
cells in tumors is higher than that in normal tissues 
or peripheral blood, which can confirm that Tregs are 
enriched in the TME. Unlike Tregs, mucosa-associated 
invariant T cells (MAITs) are enriched in non-neo-
plastic adjacent liver tissues, while effector memory T 
cells (TEMs) and primitive T cells expressing C-X3-C 
motif chemokine receptor 1 (CX3CR1) and naive T 
cells expressing CC-chemokine receptor 7 (CCR7) 
are enriched in peripheral blood [48]. The percentage 
of exhausted  CD8+ T cells in tumor specimens is sig-
nificantly higher in advanced patients, which indicated 
that the TME of hepatocellular carcinoma (HCC) could 
induce the transformation of  CD8+ infiltrating T cells 
into an exhausted state [49]. High expression of exhaus-
tion-related genes including T-cell immunoreceptor 
with Ig and ITIM domain (TIGIT) and CTLA-4 was 
also found in tumor-infiltrating Tregs [49].  CD4+T cells 
were also analyzed, and independent developmental 
pathways of infiltrating  CD4+ T helper cells in tumors 

were identified. Xiao et  al. [50] identified a new B cell 
subset with a high expression of carcinogenic PD-1 in 
HCC. This subset had a unique phenotype of  CD5high 
 CD24−/+  CD27high/+  CD38dim, which was different from 
the traditional peripheral regulatory B cell phenotype 
of  CD24high  CD38high.

As one of the leading causes of cancer-related death 
worldwide, gastric cancer is a serious threat to human 
health [51].  FOXP3+ Tregs are abundant in gastric can-
cer tissues, and the high infiltration of  FOXP3+ Tregs in 
tumors may indicate a better prognosis of gastric cancer 
[52]. It has been found that patients with a high expres-
sion level of  CD8+ and  FOXP3+ TILs in epithelium have 
better clinical outcomes [53]. The short distance between 
 CD8+ and  FOXP3+ cells has been hypothesized to be 
related to poor prognosis, as tumor-specific  CD8+ T 
immune responses were suppressed by Tregs [53]. Okita 
et  al. [54] have demonstrated that the level of  CD11b+ 
antigen presenting cells (APC), neutrophils and Tregs 
are increased in metastatic tumor-draining lymph node 
(MTDLN), while the proportion of T effector cells (TEs) 
and TEMs was significantly lower in MTDLN. The long-
term protective effect of  CD4+ TEM against tumor has 
been confirmed. Tolerant semi-mature  CD11b+ PD-L1+ 
APCs stimulated by gastric cancer cells can not only 
reduce TE and TEM but also induce Tregs proliferation 
[54].

The role of TILs
The balance of cytotoxic T cells and Tregs in tumors has 
been found to be an independent predictor for survival 
and recurrence in HCC, and Tregs affect the invasive-
ness of HCC [54]. High activated  CD8+ cytotoxic lym-
phocytes (CTLs) in combination with low Tregs in tumor 
can improve both OS and disease-free survival (DFS) of 
patients, while  CD4+ TILs,  CD8+ TILs or  CD3+ TILs 
had no effect on patients survival. In addition to the 
above effects, high-density infiltration of Tregs is also 
related to tumor vascular invasion and the lack of tumor 
cysts [55].

Immunotherapy
In the field of liver cancer, immunological checkpoint 
treatment is mainly focused on CTLA-4 and PD-L1/
PD-1 pathways [56]. Clinical trials of blocking CTLA-4 
with tremelimumab to reactivate immune response in 
the treatment of advanced HCC have shown remarkable 
efficacy [43]. Blocking PD-1 with nivolumab to stimulate 
immune responses in the treatment of patients intoler-
ance to sorafenib treatment or patients with refractory 
HCC has been found effective [56].
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Breast tumor
Immune contexture
Compared with normal tissues, breast tumors have more 
abundant cell populations and greater phenotypic hetero-
geneity [57, 58]. Azizi et al. [59] identified that unlike the 
M1/M2 macrophage polarization model in breast tumor, 
T cell activation was a continuous process. They found 
that B cells were enriched in lymph nodes, while naive T 
cells were concentrated in peripheral blood. More cyto-
toxic T cells, activated macrophage clusters, and Tregs 
accumulated in tumors rather than in non-tumorous 
tissues or peripheral blood. Increased gene expression 
variance in tumor compared to normal tissue leads to 
significantly increased diversity of cell states. Under 
varied environmental conditions, the gene expression 
of Treg clusters did not show significant heterogeneity, 
while significant differences in exhaustion, hypoxia and 
anti-inflammatory gene signature of TEs were observed 
[59]. The traditional view in macrophages is that the acti-
vated states of M1 and M2 are mutually exclusive [60]. 
However, recent research outcomes challenge this view. 
It has been found that both pro-inflammatory M1 and 
tissue reparative M2 genes can be expressed simultane-
ously in the same macrophage and they may be interde-
pendent [61].

The role of TILs
In breast cancer, TILs can indicate the response to 
chemotherapy or immunotherapy and are associated 
with patient survival [62–64]. PD-1 expression in T cells 
involved in tumors often associates with a state of T cell 
exhaustion. However,  CD8+ TILs with PD-1 expres-
sion in human breast tumor retain strong capacity for 
degranulation and cytokine production [65, 66]. Differ-
ent from the role of  CD8+ TILs in breast tumor which is 
associated with improved clinical outcomes,  CD4+ TILs 
including  FOXP3+ Tregs, Th1, and Th17 cells have con-
troversial prognostic roles. Some studies have shown that 
patients with high levels of  FOXP3+ TILs have poor che-
mosensitivity and worse prognosis, while others reported 
that breast cancer patients with high levels of  FOXP3+ T 
cells had better outcomes [67, 68].

Immunotherapy
Breast tumors can be divided into “inflamed” tumors and 
“non-inflamed” tumors according to the level of inter-
feron (IFN)-producing and cytotoxic TILs, or expression 
level of PD-L1 in tumors and PD-1 in immune cells [69]. 
Immune checkpoint therapy harvests the best efficacy 
in “inflamed” tumors which are characterized by high 
level of IFN-producing and cytotoxic TILs, or high-level 
expression of PD-L1 in tumors and PD-1 in immune cells 

[69]. Few breast tumors are considered to be “inflamed” 
tumors. Triple-negative breast cancer (TNBC) is usually 
viewed as the most “inflamed” breast cancer subtype, 
so most immunotherapy trials for breast cancer, includ-
ing immunosuppressive agents against PD-1 or PD-L1, 
such as atezolizumab, have been applied to TNBC [70]. 
However, for “non-inflamed” breast tumors such as those 
being estrogen receptor positive  (ER+) or human epider-
mal receptor 2 negative  (HER2−) breast tumors, improv-
ing the efficacy of immunotherapy remains a challenge 
[71].

Immune contexture in other tumors
Clear cell renal cell carcinoma (ccRCC)
Chevrier et  al. [72] depicted a landscape of TME in 
ccRCC patients using single-cell analysis. Various bio-
markers expressed by T cells and tumor-associated 
macrophages (TAMs) can be used as potential targets 
of immunotherapy [73]. CD38, the most overlapping 
marker with PD-1, has been found as a potential marker 
of T cell depletion in ccRCC [74]. Macrophages in the 
TME can co-express anti-tumor marker (CD169) and 
pro-tumor markers (CD163, CD204, and CD206) [75]. 
ccRCC has the highest heterogeneity of TAMs superior 
to CD8 composition and CD4 composition [72]. It has 
been identified that ccRCC TAMs have a unique M2 phe-
notype which can induce Tregs amplification, character-
ized by the expression of IL-10, CD163, fibronectin 1, 
and IFN-4 [76–78].

Hodgkin’s lymphoma (HL)
The most common subtype of malignant lymphoma in 
young people is Hodgkin’s lymphoma (HL) [79]. Studies 
have focused on the TME of classical HL with the use of 
mass cytometry analysis. In some human solid tumors, 
the blocking effect of PD-1 is related to the activation of 
 CD8+ cytotoxic T cells in TME [80–85]. In most classi-
cal HLs, the simultaneous increase of  CD4+ Th1 polar-
ized Tregs and differentiated T effectors were observed 
[86]. The complementary mechanism may exist in the 
immunosuppression of classical HL, which made the 
expression level of PD-1 in  CD4+ Th1 polarized T effec-
tors and Tregs differ greatly [86]. PD-1+ T cells in periph-
eral blood of HL patients were found increased compared 
with healthy people and several Phase I dose escalation 
trials showed effective treatment of nivolumab (anti-
PD-1 antibody) [87].

Melanoma
Melanoma can be divided into four subtypes accord-
ing to the mutation genotypes. They are BRAF, N-Ras, 
K-Ras, and H-Ras-mutant melanomas [88]. Single-cell 
RNA-seq has been applied to study the composition of 
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tumor immune cells in melanoma. Both  CD4+ T cells 
and  CD8+ T cells have different transcriptional states in 
tumors, which shows a continuous transition from an 
early effector to a dysfunctional T cell state [89]. Dys-
functional  CD8+ T cells characterized by high expression 
of immune checkpoint molecules, such as LAG-3 and 
PD-1, are positively correlated with tumor malignancy 
[90]. It has been found that  TCF7+  CD8+ T cells can pre-
dict positive clinical outcomes of patients treated with 
anti-PD-1 antibody [91].

Single cell-analytic methods used in some other types 
of tumors are detailed in Table 1.

Single‑cell technology
Single‑cell mass cytometry
Traditional flow cytometry can only detect less than a 
dozen protein markers, making it difficult to analyze 
small numbers of cells or complex phenotypes [92]. 
Mass flow cytometry removes the limitations of flow 
cytometry by using flow cytometry in conjunction with 
mass spectrometry to significantly increase the num-
ber of detectable labels [93]. Mass cytometry is a sensi-
tive measurement method based on inductively coupled 
plasma mass spectrometry. Samples with the antibody-
metal coupling labels are vaporized and ionized in argon 
plasma, after which the detector determines the elemen-
tal composition of a sample by measuring the time-of-
flight (ToF) of the ionized elements.

Single‑cell RNA sequencing (scRNA‑seq)
Single-cell RNA sequencing (scRNA-seq) can identify 
and characterize the cell types in heterogeneous tis-
sues and different conditions via transcriptomic meas-
urements at single cell resolution [94]. Different from 
the first scRNA-seq experiment in 2009 which pro-
filed only eight cells [95], we now can obtain a large 
amount of scRNA-seq data to provide detailed biological 

information of the cells found in a sample [96]. scRNA-
seq method can analyze thousands of single cells in a sin-
gle experiment to form gene expression profiles which 
is sufficient to classify cell types. Although scRNA-seq 
provides detailed transcriptional catalogues of individual 
cells, we still need to extract more focused gene expres-
sion information from it.

Single‑cell proteomics
As the main undertaker of life activities, the protein com-
ponents of cells can indicate biological processes and dis-
eases. Novel single-molecule protein sequencing schemes 
that use tunneling currents, fluorescence and nanopores 
realize single-cell proteomics and greatly improve the 
sensitivity of low abundance protein detection [97]. Mass 
spectrometry can use tens of thousands of cells or more 
to detect and quantify proteomes [98]. Some researchers 
analyzed the subcellular distribution of more than 12,000 
human proteins using antibody-based immunofluores-
cence confocal microscopy [99]. By fluorescently labeling 
selected amino acids, an old method for protein sequenc-
ing called Edman degradation can be improved [98].

The characteristics of several single cell-analytic meth-
ods are detailed in Table 2.

Conclusions
The immune cells in TME can be divided into different 
clusters according to their surface markers and functions, 
and within the clusters of lymphocytes, there is extensive 
heterogeneity among different tumors. The immunologi-
cal profiles of different tumors were recently revealed by 
single-cell analysis technology including mass cytometry 
and single cell sequencing. Analysis of the composition 
of TME improves the ability to predict the prognosis of 
different cancers, thus provides new strategies for cancer 
treatment.

Table 1 Single cell‑analytic methods used in different cancers

Cancer Single cell‑analysis technology References

Melanoma Single‑cell RNA sequencing [100–102]

Single‑cell barcode chip (SCBC) [103]

Leukemia Single‑cell RNA sequencing [104]

Single‑cell exome sequencing [105]

Single‑cell mass cytometry [106]

Pancreatic cancer Single‑cell RNA sequencing [107, 108]

Cervical carcinoma High‑dimensional single‑cell mass cytometry [109–111]

Single‑cell whole‑genome sequencing [75, 111]

Glioma Single‑cell RNA sequencing [112–115]

Thyroid carcinoma Single‑cell DNase sequencing (scDNase‑seq) [116, 117]
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Determining the characteristics and differences of dif-
ferent TIME is necessary for tumor immunotherapy. In 
order to effectively predict patients’ response to immu-
notherapy and reveal new therapeutic targets, higher res-
olution techniques are waiting to be applied to assess the 
composition, functional status and cellular localization of 
total immune cells in TIME.
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