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Abstract 

Dysregulation of metabolism allows tumor cells to generate needed building blocks as well as to modulate epige‑
netic marks to support cancer initiation and progression. Cancer‑induced metabolic changes alter the epigenetic 
landscape, especially modifications on histones and DNA, thereby promoting malignant transformation, adaptation 
to inadequate nutrition, and metastasis. Recent advances in cancer metabolism shed light on how aberrations in 
metabolites and metabolic enzymes modify epigenetic programs. The metabolism‑induced recoding of epigenetics 
in cancer depends strongly on nutrient availability for tumor cells. In this review, we focus on metabolic remodeling 
of epigenetics in cancer and examine potential mechanisms by which cancer cells integrate nutritional inputs into 
epigenetic modification.
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Background
Dysregulated metabolism is one of the most prominent 
features of cancer. Since the postulation of aerobic gly-
colysis (Warburg effect) in the early 20th century [1], 
metabolic reprogramming in cancer has been the subject 
of extensive research [2]. Cellular metabolism is repro-
grammed at multiple levels in cancer: genetic, epigenetic, 
transcriptional, posttranscriptional, translational control, 
and posttranslational [3–10]. Consequently, the expres-
sion of a wide range of metabolism-related proteins, such 
as metabolite transporters and metabolic enzymes, are 
dysregulated in cancer cells [11].

Metabolism is reprogrammed in cancer cells through 
the action of cell-intrinsic and -extrinsic factors. Altera-
tions in oncogenes and tumor suppressor genes coopera-
tively remodel metabolic pathways to satisfy biosynthetic 
demands of cancer cells [12]. At the same time, microen-
vironmental factors modulate metabolic reprogramming; 
these factors include nutritional [13], inflammatory, and 
immune elements in malignant tissue [14]. For example, 

metabolic activity and nutritional status of cancer cells 
strongly influence epigenetics, especially modifications 
on histone and DNA [15]. The metabolic reprogramming 
interacts with epigenetic regulation and signal transduc-
tion to promote cancer cell survival and proliferation [16, 
17], and to influence a broad range of biological processes 
[18].

This review summarizes recent advances in our under-
standing of metabolic recoding of epigenetics in cancer, 
with particular emphasis on how cancer cells encode 
nutrient input into the epigenetic landscape.

Main text
Metabolites are key players in epigenetic remodeling 
in cancer
Cancer cells show a disordered landscape [19] of epige-
netic enzymes that catalyze the addition and removal 
of epigenetic marks, such as modifications on histones 
and genomic DNA [20]. This reshaping of epigenetics is 
driven by alterations in epigenetic machinery as well as in 
the metabolic network [21].

Metabolism and epigenetics are intimately con-
nected, as epigenetic enzymes employ various meta-
bolic intermediates as substrates [22]. Dysregulation of 
metabolic pathways activates or suppresses epigenetic 
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modifiers, leading to epigenetic remodeling. The interac-
tion between cellular metabolism and epigenetics as well 
as the disease relevance of this interaction have recently 
been reviewed [15, 17]. The focus of the present review 
is how cancer metabolism modulates DNA methylation, 
histone methylation, and histone acetylation, as well as 
their connection with nutrient availability.

Acetyl‑CoA,  NAD+ and histone acetylation
The most extensively investigated epigenetic marks are 
DNA methylation and covalent modifications of histones 
[23]. Histone tails are covalently modified by diverse 
post-translational modifications [23], of which the best 
understood are acetylation and methylation [20]. Histone 
acetyltransferases (HATs) deliver an acetyl group from 
acetyl-CoA to lysine residues in histones [23], whereas 
histone deacetylases (HDACs) catalyze the reverse reac-
tion (Fig. 1). HDACs can be divided into two families [3]: 
classical HDACs directly hydrolyze acetyl-lysine [24]; 
SIRT-family HDACs deacetylate via an  NAD+-dependent 
mechanism [25]. Histone acetylation is linked to energy 
metabolism since acetyl-CoA and  NAD+ are indicators 
of cellular energy status (Fig. 1).

SAM, α‑KG, oxygen and histone/DNA methylation
Histones are methylated on lysine and arginine residues 
[26], and this methylation can repress or activate gene 
transcription [20]. Lysine methyltransferase (KMT) and 
arginine methyltransferase (PRMT) utilize S-adenosyl 
homocysteine (SAM) as the methyl donor in histone 
methylation (Fig.  2a). The reverse reaction of lysine 

demethylation is catalyzed by the amine oxidases lysine 
demethylases (LSD) 1 and 2 [27] in a reaction depend-
ent on flavin adenine dinucleotide (FAD), as well as by an 
α-ketoglutarate (α-KG)-dependent dioxygenase, which 
produces succinate in an oxygen-dependent reaction [28] 
(Fig.  2a). Both α-KG and succinate are intermediates of 
the tricarboxylic acid (TCA) cycle, indicating a functional 
correlation between the TCA cycle and α-KG-dependent 
demethylation. The enzyme that demethylates histone 
arginine  residues is being actively investigated [29, 30]. 
The protein has been proposed to be an oxygen- and 
α-KG-dependent dioxygenase similar to that responsi-
ble for lysine demethylation [29]. In this case, too, dem-
ethylation is linked to oxygen levels and the TCA cycle 
(Fig. 2a).

In humans, DNA methylation occurs predominantly at 
CpG islands [20]. In this process, DNA methyltransferase 
(DNMT) adds a methyl group—donated by SAM as in 
histone methylation—onto the cytosine of CpG dinu-
cleotides (Fig.  2b). DNA methylation typically represses 
transcription of the marked genes, helping to stabilize the 
genome and promote cell differentiation [31]. The reverse 
reaction of DNA demethylation is catalyzed by ten-
eleven translocation (TET) family enzymes, including 
TET1, TET2, and TET3, which are α-KG- and oxygen-
dependent dioxygenases [32]. TET enzymes iteratively 
oxidize 5-methylcytosine (5mC) and convert α-KG into 
succinate (Fig. 2b).

Metabolic intermediates participate as substrates or 
coenzymes in nearly all epigenetic coding processes. In 
cancer, metabolic dysregulation interacts with nutri-
tional status to modulate epigenetic marks on histones 
and DNA. This nutritional status is defined largely as the 
availability of carbon sources.

Nutrient availability affects epigenetic regulation in cancer
Glucose availability is reflected in histone and DNA 
modification in cancer
Glucose and glutamine are the major carbon sources of 
most mammalian cells, and glucose metabolism is closely 
related to histone acetylation and deacetylation. Glucose 
availability affects the intracellular pool of acetyl-CoA, 
a central metabolic intermediate that is also the acetyl 
donor in histone acetylation [33] (Fig. 1). Glucose is con-
verted to acetyl-CoA by the pyruvate dehydrogenase 
complex (PDC), which produces acetyl-CoA from glu-
cose-derived pyruvate; and by adenosine triphosphate-
citrate lyase (ACLY), which generates acetyl-CoA from 
glucose-derived citrate. PDC and ACLY activity depend 
on glucose availability, which thereby influences histone 
acetylation and consequently modulates gene expres-
sion and cell cycle progression [34, 35]. Dysregulation of 
ACLY and PDC contributes to metabolic reprogramming 

Fig. 1 Cancer cells coordinate nutrient status with histone 
acetylation. Cancer cells alter histone acetylation in response to 
the availability of different carbon sources. Ac-CoA acetyl‑CoA, 
HAT histone acetyltransferase, HDAC histone deacetylase, SIRT 
 NAD+‑dependent sirtuin family deacetylase, NAM nicotinamide
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and promotes the development of multiple cancers, such 
as lung cancer [36]. At the same time, glucose metabo-
lism maintains the  NAD+/NADH ratio, and  NAD+ par-
ticipates in SIRT-mediated histone deacetylation [37] 
(Fig. 1). SIRT enzyme activity is altered in various malig-
nancies [25, 36, 38–41], and inhibiting SIRT6, a histone 
deacetylase that acts on acetylated H3K9 and H3K56, 
promotes tumorigenesis [42, 43]. SIRT7, which deacety-
lates H3K18 and thereby represses transcription of tar-
get genes, is activated in cancer to stabilize cells in the 
transformed state [44–46]. Interestingly, nutrients appear 
to modulate SIRT activity. For example, long-chain fatty 

acids activate the deacetylase function of SIRT6, and this 
may affect histone acetylation [47, 48].

Glucose catabolism affects histone acetylation as well 
as histone and DNA methylation, since glucose-derived 
α-KG serves as a substrate in the reactions catalyzed by 
histone demethylases and TET family DNA dioxygenases 
[49] (Fig. 2a, b).

Glutamine metabolism modulates cancer epigenetics
Glutamine metabolism also contributes to the produc-
tion of acetyl-CoA and α-KG, and glutamine oxidation 
correlates with the cell state-specific epigenetic land-
scape. Naive embryonic stem cells efficiently take up both 
glutamine and glucose to maintain a high level of α-KG 
to promote histone and DNA demethylation, which in 
turn helps maintain pluripotency [49]. Inhibition of glu-
tamine oxidation affects histone modifications including 
H4K16ac and H3K4me3 in breast cancer cell lines, alter-
ing the transcription of genes involved in apoptosis and 
metastasis [50].

Acetate and other carbon sources as epigenetic metabolites
Cancer cells absorb acetate and incorporate it into his-
tones [51]. Acetyl-CoA synthetases (ACSSs) convert 
acetate to acetyl-CoA, which in turn serves as a major 
carbon source in lower eukaryotes, but not mammals. 
However, glioma cells and hepatocellular cancer cells 
utilize acetate as an alternative carbon source to sustain 
acetyl-CoA production [52, 53] (Fig.  1). This compen-
sates for the hypoxic, nutrient-poor microenvironment 
of solid tumors. Mammalian cells express three ACSS 
isozymes (ACSS1-3). The contribution of ACSS isozymes 
to histone acetylation varies across different cancers [54–
56]. ACSS is highly expressed in glioma and hepatocellu-
lar cancer, which correlates with histone hyperacetylation 
[54–56]. ACLY functions as a switch and controls carbon 
source preference of cancer cells [57].

Other carbon sources, such as fatty acids, also regu-
late epigenetic modifications [58] (Fig. 1). A high-fat diet 
reduces the acetyl-CoA level and decreases acetylation of 
H3K23 in white adipose tissue but not liver. This suggests 
that lipids may affect cancer risk via an epigenetic mech-
anism, since obesity predisposes to the development of 
multiple cancers [59].

One‑carbon metabolism modifies chromatin methylation
In one-carbon metabolism, the amino acids glycine and 
serine are converted via the folate and methionine cycles 
to nucleotide precursors and SAM. Multiple nutrients 
fuel one-carbon metabolism, including glucose, serine, 
glycine, and threonine [60] (Fig.  2a, b). High levels of 
the methyl donor SAM influence histone methylation 
[61], which may explain how high SAM levels prevent 

a

b

Fig. 2 Cancer cells coordinate nutrient status with the methylation 
of histone and DNA. Cancer cells alter methylation of histones (a) and 
DNA (b) in response to nutrient status. SAM S‑adenosyl methionine, 
SAH S‑adenyl homocysteine, KMT lysine methyltransferase, PRMT 
protein arginine methyltransferase, LSD lysine‑specific demethylase, 
DNMT DNA methyltransferase, TCA  tricarboxylic acid cycle, TET 
ten‑eleven translocation methylcytosine dioxygenase
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malignant transformation [62]. Glucose availability  is 
encoded in methylation of H3R17 by arginine methyl-
transferase CARM1 [63].

2‑hydroxyglutarate and oncometabolites
In cancer, genetic alteration and microenvironment 
perturbation modify the catalytic properties of meta-
bolic enzymes, reshaping epigenetics. Cancer-associated 
mutations in isocitrate dehydrogenase (IDH) 1 and 2 
confer on the enzyme the ability to produce 2-hydroxy-
glutarate (2-HG), which is structurally analogous to α-KG 
[64] (Fig.  3). 2-HG competes with α-KG to bind to the 
catalytic pocket of several α-KG-dependent epigenetic 
enzymes, suppressing their catalytic activity and leading 
to genome-wide hypermethylation of histones and DNA 
[65, 66]. The resulting aberrant gene expression promotes 
tumorigenesis [67, 68]. The metabolic enzymes fumarate 
hydratase (FH) and succinate dehydrogenase (SDH) are 
also frequently mutated in certain cancers [69]. Loss-of-
function mutations in FH and SDH lead to accumula-
tion of fumarate and succinate, which act as competitive 
inhibitors of α-KG-dependent dioxygenase [70] (Fig.  3). 
The oncogenic effect of α-KG, fumarate, and succinate 
via epigenetic regulation has led them to be named onco-
metabolites [15].

2-HG also accumulates in hypoxic cancer cells with-
out IDH mutations, through a process mediated at least 
in part by the metabolic enzymes malate dehydroge-
nase (MDH) and lactate dehydrogenase (LDH). Hypoxia 
makes the tumor microenvironment acidic, which causes 
MDH and LDH to bind substrates promiscuously and 
generate 2-HG [71, 72] (Fig. 3). Under these conditions, 

more 2-HG is produced by LDH than by MDH [73]. LDH 
may also modulate epigenetics in cancer cells indepen-
dently of 2-HG, since tumor pH is highly heterogeneous 
and in fact only some cancer cell lines or tumor tissues 
reach the pH of 6 needed to trigger promiscuous 2-HG 
production [74–76]. The in vivo significance of substrate 
promiscuity-induced 2-HG production remains to be 
explored.

Other metabolites show oncogenic effects in certain 
tissues. For example, normal colonocytes utilize butyrate 
as a major carbon source. Glucose is used by a subtype 
of colon cancer cells as the carbon source, resulting in 
butyrate accumulation. Butyrate further inhibits HDAC 
to induce histone hyperacetylation and promote the pro-
liferation of colon cancer cells [77] (Fig. 1).

Conclusions
Cellular metabolism is highly dynamic and compartmen-
talized. The accumulation of certain metabolites in can-
cer can target epigenetic enzymes to globally alter the 
epigenetic landscape. Evidence suggests that this altera-
tion can be random. For example, cancer cells containing 
IDH mutations show highly variable DNA hypermeth-
ylation patterns, with effects on gene transcription diffi-
cult to predict [78]. In this model of metabolic recoding 
of cancer epigenetics (Fig.  4a), fluctuations in the level 
of a metabolite produce metabolic noise and randomly 
modify epigenetic marks to generate diverse clonal epige-
netic landscapes. This provides an opportunity for clonal 
selection during tumor growth, metastasis, and relapse 
(Fig. 4a). At the same time, recent studies have provided 
evidence supporting the idea that cancer-related meta-
bolic changes lead to locus-specific recoding of epige-
netic marks.

Reign of chaos: precise epigenetic reprogramming 
by cancer metabolism
Dose‑responsive modulation of cancer epigenetics 
by metabolites
2-HG presumably inhibits all α-KG-dependent epigenetic 
enzymes, but its overall effects appear to depend strongly 
on its intracellular concentration. Cancer cells carry-
ing IDH mutations, for example, vary significantly in 
2-HG concentration [79], and this influences the result-
ing epigenetic recoding. Transient expression of mutant 
forms of IDH suppresses the H3K9 demethylase KDM4C 
more strongly than other demethylases [66]. In addition, 
α-KG-dependent dioxygenases show diverse half-maxi-
mal inhibitory concentrations  (IC50) of 2-HG [80]. These 
findings suggest that metabolic alterations in cancer cells 
reshape epigenetics in a manner dependent on metabo-
lite dose (Fig. 4b).

Fig. 3 Production of oncometabolites dysregulates epigenetics 
in cancer. Mutations in the metabolic enzymes IDH, FH, and SDH 
(red) promote the generation, respectively, of the oncometabolites 
2‑HG, fumarate, and succinate. Hypoxia causes LDH and MDH 
(grey) to produce 2‑HG, which acts as a competitive inhibitor of 
α‑KG‑dependent dioxygenase to deregulate DNA and histone 
methylation. This leads to aberrant gene expression and cancer
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Histones are conjugated to a large number of metabo-
lites [81]. It is thus reasonable to expect that fluctuations 
of metabolites can broadly impact the epigenetic land-
scape. Understanding metabolism-induced epigenetic 
alterations requires the development of an atlas of inter-
actions between key metabolites and epigenetic enzymes 
in cancer cells.

Sequence‑specific recruitment of metabolic enzymes
Precise recoding of epigenetic marks requires recog-
nition of a specific genomic locus or DNA sequence. 
Metabolic enzymes that have translocated to the nucleus 
may recognize specific DNA sequences by binding to 
transcription factors (Fig.  4c). Some metabolic enzymes 

translocate to the nucleus in response to stress or physi-
ological signals. For example, glucose deprivation causes 
cytosolic ACSS2 to relocate to the nucleus, where it binds 
to transcription factor EB (TFEB). When TFEB binds to 
the promoter regions of lysosomal and autophagy genes, 
it brings ACSS2 with it; the ACSS2 produces acetyl-
CoA and increases histone H3 acetylation, modulating 
the expression of TFEB-regulated genes [82]. In a sec-
ond example, glucose starvation enhances interaction 
between nuclear FH and ATF2. ATF2 recruits FH to its 
target genes, inhibiting H3K36me2 demethylation and 
increasing expression of those genes, ultimately arrest-
ing cell growth [83]. Other metabolic enzymes may also 
translocate to the nucleus and associate with transcrip-
tion factors to mediate specific epigenetic remodeling.

One hypothesis holds that the ability of nuclear ACSS2 
to alter histone acetylation and of nuclear FH to alter 
methylation depend on high local concentrations of 
acetyl-CoA and fumarate, respectively, at the specific 
target DNA sequences [82, 83]. Testing this hypothesis 
requires metabolite quantification in subcellular com-
partments, which remains a challenging task [84]. The 
engineering of artificial metabolite sensors may advance 
locus-specific and real-time monitoring of epigenetic 
metabolites [85]. Studies are also needed to explore the 
possibility that nuclear metabolic enzymes modify epige-
netic marks independently of their catalytic activity.

Targeting of epigenetic enzymes by nutritional signals
Nutrient sensing and signaling is a key regulator of epi-
genetic machinery in cancer. During glucose shortage, 
the energy sensor AMPK activates arginine methyltrans-
ferase CARM1 and mediates histone H3 hypermethyla-
tion (H3R17me2), leading to enhanced autophagy [63]. 
In addition, O-GlcNAc transferase (OGT) signals glucose 
availability to TET3 and inhibits TET3 by both decreas-
ing its dioxygenase activity and promoting its nuclear 
export [86]. These observations strongly suggest that 
nutrient signaling directly targets epigenetic enzymes to 
control epigenetic modifications (Fig. 4d).

The nutritional status of cancer cells is highly dynamic 
during cancer development. How cancer cells coordinate 
nutrient status with epigenetic phenomena during cancer 
progression remains an open question.

Concluding remarks
Our understanding of cancer metabolism has increased 
tremendously in the last decade. What were once consid-
ered bystander cells in the tumor microenvironment—such 
as cancer-associated fibroblasts [87], immune cells, and 
inflammatory cells [88, 89]—are now recognized as con-
tributors to metabolic remodeling of cancer [90]. For exam-
ple, oxidative cancer cells thrive on lactate in the tumor 

a

b c

d

Fig. 4 Metabolic recoding of epigenetics in cancer. a A model 
of random metabolic recoding of epigenetics in cancer. b 
Dose‑dependent effect of metabolites on epigenetic enzymes. 
Higher accumulation of a specific metabolite affects more epigenetic 
targets. Half‑maximal inhibitory concentrations  (IC50) of different 
target epigenetic enzymes are indicated as triangles. Different colors 
of triangles represent different epigenetic enzymes. c Metabolic 
enzymes translocate to the nucleus, where they bind to transcription 
factors that carry the enzymes to specific target sequences in the 
genome. d Nutrient sensing and signaling modulate the epigenetic 
machinery
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microenvironment [91], while pancreatic cancer cells 
depend on alanine secreted by stroma-associated pancre-
atic stellate cells [92]. Metabolite transport within tumor 
tissue and crosstalk between cancer cells and “bystander” 
cells cooperatively remodel cancer metabolism, suggest-
ing an intricate and complicated regulatory network in the 
tumor microenvironment.

Metabolic remodeling has also been implicated in a vari-
ety of human diseases other than cancer [17, 93]. Cellular 
metabolism is closely related to stem cell homeostasis and 
differentiation [94]. Elucidating the connection between 
metabolism and epigenetics would provide mechanistic 
insights into these diseases and offer potential therapeutic 
opportunities for translational investigations.
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