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New insights from the widening 
homogeneity perspective to target intratumor 
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Abstract 

Precision medicine has shed new light on the treatment of heterogeneous cancer patients. However, intratumor 
heterogeneity strongly constrains the clinical benefit of precision medicine. Thus, rethinking therapeutic strategies 
from a different facet within the precision medicine framework will not only diversify clinical interventions, but also 
provide an avenue for precision medicine. Here, we explore the current approaches for targeting intratumor hetero-
geneity and their limitations. Furthermore, we propose a theoretical strategy with a “homogenization” feature based 
on iatrogenic evolutionary selection to target intratumor heterogeneity.
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Background
Tumor heterogeneity includes intertumor and intra-
tumor heterogeneities. Genetic and phenotypic varia-
tions are observed among different tumor patients [1, 
2]. Extremely high genetic diversity makes each patient 
unique and distinct. However, within a tumor, both 
genomic instability and the tumor subclone architecture 
vary over time [3–8]. As the tumor evolves, the parental 
subclone acquires an increasing number of genetic and 
epigenetic alterations, resulting in a tumor with different 
subclone phenotypes.

Intratumor heterogeneity is characterized by its 
dynamic changes. Tumor initiation and progression are 
generated from stochastic to sequential mutations that 
contribute to subsequent clonal expansion and intra-
tumor heterogeneity [9]. Therefore, a single biopsy is 
unlikely to capture the complete genomic landscape of a 
patient’s tumor, considering the spatiotemporal changes 
in tumor heterogeneity [10]. Consequently, even if the 
subclone harboring the detected molecular phenotype 

has been targeted effectively, other subclones of the 
tumor may still grow. Moreover, the sensitive subclone 
may become resistant to therapy, causing further disease 
deterioration.

Tumor homogeneity refers to the cellular populations 
bearing the same or similar genetic or epigenetic char-
acters within the same lesion or in different lesions of 
the same patient. Here, we propose an ideal situation in 
which the tumor becomes a homogeneous cell popula-
tion, i.e., tumor cells that acquire common molecular 
properties. Once tumor heterogeneity is drastically con-
fined in this manner, the cells are susceptible to a single 
intervention that targets this particular feature. Recent 
technological advances in both molecular diagnostics 
and targeted drugs have led to the theory of “acquiring 
tumor homogeneity”.

This review summarizes the recent understanding and 
clinical practice of precision therapy, and illustrates the 
current strategies and limitations for targeting intratu-
mor heterogeneity. Then, we discuss the possibility and 
implementation of “homogenization” therapy for preci-
sion medicine.
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Intratumor heterogeneity challenges precision 
medicine
Precision therapy exerts profound effects on cancer 
patients. Sequencing technology and genomic analy-
ses are driving the progress of precision therapy. In the 
clinic, molecular diagnosis has been applied to biop-
sies of tumor tissues to guide the selection of precision 
therapy [11, 12]. However, the outcomes of clinical tri-
als regarding the assessment of precision therapy are 
discouraging. For example, the SHIVA trial showed no 
significant difference in progression-free survival (PFS) 
between targeted and conventional therapies [13]. The 
Princess Margaret IMPACT-COMPACT study reported 
a non-randomized comparison, which indicated an 
objective tumor response rate of 20% in the matched 
group (between genotype and targeted therapy) versus 
11% in the unmatched group [14].

Intratumor heterogeneity and plasticity
Precision therapy has been hindered by multiple fac-
tors, resulting in the limited success of clinical therapy. 
Tannock et  al. reviewed the problem and concluded 
that Darwinian evolution leading to intratumor hetero-
geneity may weaken the effect of precision therapy [15]. 
Genetic alterations, including aneuploid rearrangements 
and point mutations, generate extensive clonal diversity 
[16]. A recent study [17] showed that more than 100 mil-
lion coding region mutations exist in a single tumor, and 
such high genetic variation subverts the effect of targeted 
therapy. Moreover, genetically [18, 19] and epigenetically 
unstable tumorigenic cells contribute to tumor plasticity. 
Evidence from both cell line [20–23] and animal model 
[24, 25] indicates that tumorigenic cells display cellular 
plasticity that allows them to transit between different 
states. Overall, intratumor heterogeneity and plastic-
ity co-exist within a tumor, and the unification of which 
comprehensively illustrates the difficulty of precision 
therapy.

Based on the current knowledge of intratumor het-
erogeneity and plasticity, two strategies have been pro-
posed to partly solve the problem (Fig. 1). First, targeting 
a shared pathway may be practical when parallel muta-
tions leading to pathway convergence are detected [26]. 
For example, different molecular subtypes of breast 
cancer share pathways including Notch [27], Wnt [28], 
Her-2 [29], and STAT3-NF-kB [30]. In renal cancer, con-
straints in activation of the PI3K/mTOR pathway, which 
manifests as the shared pathway of mutations in PTEN, 
PIK3CA, TSC1, or mTOR, might be exploitable for ther-
apeutic benefit [31]. Therefore, despite the diversity of 
numerous mutations, these mutations affect the same 
pathways, and agents that target these pathways may 
maximize the benefit of precision therapy [32–34].

The second strategy is to block cellular plasticity by 
preventing the transition between cellular states, which 
may increase therapeutic efficacy. This strategy includes 
inhibitors of c-Met [35] and TGF-β [36]. Moreover, two 
recent studies [24, 25] showed that mutant PIK3CA in 
breast cancer induces multipotency in lineage-commit-
ted basal and luminal cells, which drives plasticity and 
intratumor heterogeneity. Likewise, in pancreatic cancer, 
PI3K/PDK1 signaling pathway mediates cellular plastic-
ity and acts as a key effector of oncogenic Kras [37]. An 
interesting recent study [38] suggested that p53 is essen-
tial for DNA methylation homeostasis in embryonic stem 
cells, and the loss of which promotes clonal heteroge-
neity. Taken together, identifying the mechanisms con-
tributing to intratumor heterogeneity is imperative to 
identify suitable targets for therapeutic interventions.

Intratumor heterogeneity and acquired drug resistance
Therapeutic intervention can induce a drug-tolerant phe-
notype in the absence of a pre-existing resistant clone [39, 
40]. A recent study demonstrated that application of a 
drug initiates cellular reprogramming, revealing a mech-
anism of acquired drug resistance [41]. Consequently, 
continued targeted therapy in the presence of resistant 
subclones might accelerate tumor progression [42]. For 
example, continued BRAF inhibitor treatment results in 
tumor metastasis of RAS- and BRAF-mutant melanoma 
cells [43] and paradoxical activation of the RAS-ERK 
pathway in multiple myeloma clones [44]. Therefore, 
blind or persistent use of targeted therapy for a drug-
resistant tumor is inappropriate. Accurate and timely 
monitoring of the evolving molecular landscape of a 
tumor is critical but difficult.

Finding target controlling intratumoral
heterogeneity and plasticity

Epigenetic therapy primes cancer 
cells to restore sensitivity

Targeting shared pathways

Targeting the primary driver together 
with the anticipated adaptive response

Fig. 1 Current strategies targeting intratumor heterogeneity. Four 
strategies to solve this problem are as follows. First, targeting a shared 
pathway. Second, targeting the primary mutation together with the 
anticipated mutation. Third, finding a target controlling intratumor 
heterogeneity and plasticity. Fourth, epigenetic therapy that primes 
cancer to restore sensitivity
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Currently, substantial efforts have attempted to solve 
the problem of intratumor heterogeneity and acquired 
drug resistance (Fig. 1). The first approach is to target the 
primary driver and simultaneously block the anticipated 
adaptive response [32, 45]. For example, in breast can-
cer, MAPK can be activated in response to PI3K inhibi-
tion. Thus, the combination of MEK and PI3K inhibitors 
shows great potential [46–50]. Likewise, in BRAF-mutant 
melanoma, resistance to BRAF inhibitors is mediated 
by reactivation of MAPK [43, 51] and PI3K-PTEN-AKT 
[51] pathways. Thus, preemptive inhibition of the MEK 
pathway [52, 53] or both MAPK and PI3K pathways [51] 
can prolong PFS. However, because epigenetics play an 
important role in cellular plasticity and drug resistance 
[54–57], epigenetic therapy has gradually gained popu-
larity to sensitize tumor cells for therapy. For example, 
DNA methylation and histone deacetylase inhibitors are 
thought to prime cancer cells to restore sensitivity to pre-
viously ineffective drugs [58, 59].

Exploring the “homogenization” strategy 
for precision medicine
Limitations exist in all approaches mentioned above 
regarding targeting intratumor heterogeneity. Consid-
ering the complex signaling pathways, identifying the 
driver gene contributing to intratumor heterogeneity is 

difficult. Evolution from a tumor cell to an advanced can-
cer is a long process, and a large number of driver genes 
are involved in further deterioration (Fig.  2). Therefore, 
we propose an alternative approach to target intratumor 
heterogeneity. The “homogenization” strategy introduces 
a consistent genotype or creates a specific environment 
to drive all tumor cells exhibit the same phenotype. This 
approach weakens intratumor heterogeneity and results 
in a less diverse cell population. Thereafter, administra-
tion of a sensitive drug that targets these cells would 
eliminate the tumor population (Fig. 3).

Principles of the homogenization strategy
Because the tumor cell population is highly heterogene-
ous and unstable, evolutionary dynamics can be capi-
talized to select a homogenous cell population under 
stress. As the tumor evolves, unadapted subclones are 
completely lost, whereas fit subclones become dominant, 
and less fit minor subclones persist by forming reservoirs 
from which evolution can continue [60]. Consequently, 
therapeutic interventions may eliminate specific clones 
and inadvertently exert selective pressure on the propa-
gation of resistant clones [39, 40]. Thus, homogenization 
imposes selective pressure on tumor cells with genetic 
diversity by eliminating the therapy-sensitive cell popu-
lation, leading to a therapy-resistant cell population with 
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Fig. 2 Driver mutations in tumor evolution. A cell develops a specific driver mutation that gives rise to a benign tumor. The cell then develops an 
additional driver mutation to invade surrounding tissues. Subsequently, the cell develops an additional driver mutation that enables the tumor 
to engage in hematogenous metastasis. Thereafter, the tumor may acquire additional driver mutations to propagate and sustain intratumor 
heterogeneity
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a highly adaptive potential. Genetically, this process 
strongly accelerates and exacerbates a particular muta-
tion deficiency, which emerges as an adaptive variant. 
Thus, surviving cells have a common and predominant 
genotypic variation.

To drive tumor cells into a homologous population, a 
selective condition must to be identified for homogeni-
zation. A general pharmacological selection approach to 
gain a cell population with shared adaptability and fitness 
from a heterogeneous cell population is outlined here. 
In this case, exploiting iatrogenic evolutionary selection 
pressure is tractable and collateral sensitivity emerges in 
general, i.e., sensitivity to another drug at the expense of 
resistance acquired to one drug has been observed [61, 
62]. Such evolutionary constraints have been exploited 
in a murine model of acute lymphoid leukemia [63]. Spe-
cifically, dasatinib treatment results in selection of the 
acquired resistance BCR-ABL1 V299L mutation and ren-
ders cells sensitive to non-classical BCR-ABL inhibitors 
such as cabozantinib and vandetanib.

Techniques and resources facilitate implementation 
of a second stress
After selection of a homogenous tumor cell population 
via adaptation, identification of the selected genotype is 
required. Based on our understanding, three possibili-
ties can be considered. First, a target gene likely exists, 
and genetic variation of the original drug target of the 
targeted gene is possible. Second, a particular genotype 
is functionally associated with activation of the down-
stream signaling pathway of the original target gene, 
which provides a possibility to bypass the first stress. 
Third, the emerging genotype of the certain gene prob-
ably locates near the original target gene in the genome. 
Therefore, the genotype induced by the first stress can be 
determined by targeted deep sequencing of these three 
possibilities.

With the use of targeted deep sequencing, oncologists 
can profile the spectrum of genomic changes in a tumor 
sample. For example, a typical study revealed the molecu-
lar taxonomy of prostate cancer by omics analysis as well 
as potentially actionable targets [64]. Moreover, research 
initiatives, such as The Cancer Genome Atlas (TCGA) 
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Fig. 3 Schematic depiction of “homogenization” therapy. First, a homogeneous cell population is induced, followed by administration of a drug to 
which the cells are sensitive to eradicate the tumor population
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and International Cancer Genome Consortium (ICGC), 
capitalize the available information of large numbers of 
tumor samples to identify genes and pathways important 
for cancer progression [65–69]. Targeted drugs, which 
are designed to specifically suppress certain oncogenic 
signaling pathways, are widely applied in clinical practice. 
Thus, precision therapy is appealing and changing the 
pattern of clinical practice for tumor patients. Notably, a 
multicenter and prospective study called tracking cancer 
evolution through therapy (TRACERx) [70–73] provided 
an applicable model to track tumor evolution depending 
on multiregion and longitudinal sampling and genetic 
analysis. Going forward, such large scale genomic studies 
may contribute to clinical practices.

Subsequently, there is a need to determine a drug that 
specifically targets the newly acquired genotype through 
drug screening or designing a targeted drug. To this end, 
cancer systems biology may provide a more holistic view 
of cancer [74, 75]. Specifically, this approach can bridge 
molecular characteristics with pharmacogenomics to 
deliver targeted therapy, which will significantly improve 
the specificity and efficacy of targeted therapy. Moreover, 
some datasets [76] are rich resources to identify thera-
peutic options for selected targets.

Dynamic monitoring of the homogenization genotype
The implementation of dual drug stresses theoretically 
leads to the extinction of the tumor cell population. Nev-
ertheless, the theory of evolutionary dynamics proposes 
that the homogenous cell population can gain the abil-
ity to escape the second stress via continued phenotypic 
changes. To solve this problem, the genotype induced by 
the first stress should be monitored to avoid the emer-
gence of resistance to the second drug. When a reduction 
is detected, the first drug should be used again to select 
and enrich the particular genotype, which makes the 
selected cell population more vulnerable to the second 
drug. Furthermore, when an increase is detected, therapy 
with the second drug should be resumed. The opposing 
selective effect of these two drugs imposes an adaptive 
dilemma for the selected homogenous genotype, and an 
analogous strategy has been demonstrated by many stud-
ies [77–81].

Current techniques that facilitate dynamic monitoring 
of the homogenization genotype include liquid biopsies 
[82–85] such as circulating tumor cells (CTCs) and cir-
culating free DNA (cfDNA), which allows assessment 
of repeated samples and longitudinal measurement of 
clonal evolution in tumor patients. Conceivably, combin-
ing omics sequencing with liquid biopsies is required for 
dynamic monitoring.

Future perspectives
Homogenization therapy is based on inducing a common 
and druggable characteristic trait of a heterogeneous cell 
population. The genetic representation of clonal evolu-
tion from the primary tumor to relapse reveals conver-
gent evolution, suggesting that this strategy is possible 
[86]. In addition, a proof-of-principle study in yeast has 
demonstrated the feasibility of this strategy [87]. Specifi-
cally, an “evolutionary trap” has been devised by reducing 
karyotypic heterogeneity to a defined predictable state 
via initial drug exposure, and then a secondary drug was 
subsequently applied. This study illustrated that evolu-
tionary dynamics can be exploited for homogenization 
therapy, and evidence is emerging to support the efficacy 
of this approach. A case study [81] has reported that a 
patient with ALK-rearranged non-small-cell lung car-
cinoma, which harbored a subclonal C1156Y mutation, 
acquired drug resistance to crizotinib and responded to 
the third-generation ALK inhibitor lorlatinib. Following 
treatment with lorlatinib, the tumor acquired an L1198F 
mutation, but this mutation promoted resensitization 
to crizotinib, which improved the patient’s prognosis. 
Ultimately, other options and interventions to achieve 
homogeneity should be explored further. Moreover, 
exploration of tumor homogeneity requires the design of 
more clinical practices. Taken together, homogenization 
therapy sheds new light on our understanding of intratu-
mor heterogeneity and provides a novel strategy to solve 
problems associated with tumor treatments.
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