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REVIEW

Parkinson’s disease-associated protein 
Parkin: an unusual player in cancer
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Abstract 

The mutation of the Parkin gene is a cause of familial Parkinson’s disease. A growing body of evidence suggests that 
Parkin also functions as a tumor suppressor. Parkin is an ubiquitin E3 ligase, and plays important roles in a variety of 
cellular processes implicated in tumorigenesis, including cell cycle, cell proliferation, apoptosis, metastasis, mitophagy 
and metabolic reprogramming. Here we review the role and mechanism of Parkin in cancer.
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Background
Parkinson’s disease (PD), the second most common neu-
rodegenerative disorder after Alzheimer’s disease, affects 
1–2% of the general population [1–3]. PD is character-
ized by the progressive loss of dopaminergic neurons in 
the substantia nigra [1–3]. Mutations of the Parkin gene 
(PARK2) have been linked to autosomal recessive juve-
nile PD (ARJPD), one of the most common familial forms 
of PD [3, 4]. Approximately 50% of the individuals with 
ARJPD carry PARK2 mutations [3, 5]. Parkin dysfunction 
has also been implicated, albeit to a lesser degree, in the 
more common sporadic form of PD, as well as other neu-
rodegenerative diseases, including Alzheimer’s disease 
and amyotrophic lateral sclerosis [2, 6, 7].
PARK2 encodes a 465-residue protein comprising an 

N-terminal ubiquitin-like domain (Ubl), a cysteine-rich 
RING0 domain, and two C-terminal RING domains 
(RING1, RING2) separated by an “in-between RING” 
(IBR) domain. All these domains appear to be function-
ally important, since mutations in all domains have been 
identified in PD patients [3, 8]. Similar to many other 
proteins containing RING-domains, Parkin functions 
as an E3 ubiquitin ligase. It ubiquitinates various pro-
teins to regulate a variety of cellular processes, including 

mitochondrial homeostasis, anti-oxidative stress and 
mitophagy (mitochondria-specific autophagy), and such 
actions are thought to explain at least partly how Parkin 
prevents PD [2, 6, 9, 10]. PARK2 mutations could reduce 
its ability to ubiquitinate substrates such as CDCrel-1, 
Pael receptor, α-synuclein and synphilin-1, leading to 
their toxic build-up in the brain, which in turn causes PD 
[10–15]. Parkin regulates mitophagy to clear damaged 
mitochondria, thus preventing the accumulation of reac-
tive oxygen species (ROS) and limiting oxidative damages 
in cells [9, 10, 16].

A growing body of evidence suggests that Parkin also 
functions as a tumor suppressor. In this review, we sum-
marize recent advances on the tumor suppressive func-
tion of Parkin and its underlying mechanisms.

Parkin is a tumor suppressor
Parkin is ubiquitously expressed but predominantly in 
the brain. PARK2 is localized to human chromosome 
6q25-27, a region frequently lost in cancers [17]. Loss 
of PARK2 heterozygosity and copy number has been 
observed in breast, lung, colorectal, and ovarian can-
cers [17–20]. Mutations of the Parkin gene have been 
reported in many types of cancers, although the fre-
quency of these mutations appears to be relatively low 
[21, 22]. For instance, analysis of the datasets from cBio-
portal (http://www.cbiop ortal .org) [23] indicates that the 
Parkin gene is mutated in < 1% of breast cancer, 2–5% 
of colorectal cancer, ~ 5% of lung squamous cell carci-
noma, and ~ 5% of gastric cancer [22, 24] (Fig.  1). Most 
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Parkin gene mutations linked to cancer are missense 
mutations, with > 10% involving frameshifts or trunca-
tions [22]. Many missense mutations in cancer, such as 
T173A, T240M and P294S, impair E3 ubiquitin ligase 
activity and the tumor suppressive function of Parkin [24, 
25]. In addition to mutations within the PARK2 coding 
sequence, levels of PARK2 mRNA and protein are fre-
quently down-regulated in various types of cancers [17–
20, 24]. Loss of PARK2 heterozygosity and copy number 
contributes to this down-regulation; hypermethylation of 
the PARK2 promoter may also be involved in certain can-
cers such as leukemia and colorectal cancer [26, 27].

Parkin undergoes various types of post-translational 
modifications that modulate its level and activity [28]. For 
instance, PINK1 phosphorylates Parkin to activate its E3 
ubiquitin ligase activity, and recruits cytosolic Parkin to 
damaged mitochondria [9, 16, 29, 30]. Cyclin-dependent 
kinase (CDK) 5 and CK-1 phosphorylate Parkin, affecting 
its solubility without altering its activity [31, 32]. In con-
trast, c-Abl phosphorylates Parkin at Tyr 143 and inacti-
vates it [33]. Sumoylation of Parkin promotes its nuclear 
localization and auto-ubiquitination [34], neddylation 
increases its activity [35], and S-nitrosylation reduces 
its activity [36]. In the brain, many of these post-trans-
lational modifications modulate Parkin’s neuroprotective 
function. It remains unclear whether these post-transla-
tional modifications are altered in cancer cells and con-
tribute to the observed reduction in Parkin expression or 
activity in cancer.

Many different Parkin knockout mouse models have 
been established to study the role of Parkin in PD [37, 
38]. However, most strains of Parkin knockout mice fail 

to model PD pathophysiology or display the selective 
loss of dopaminergic neurons characteristic of human 
PD [37, 38]. Instead, experiments with some of these 
Parkin knockout mice support the idea that Parkin is a 
potential tumor suppressor gene. Parkin knockout mice 
lacking exon 3 of PARK2 show enhanced hepatocyte pro-
liferation and develop macroscopic hepatic tumors that 
resemble human hepatocellular carcinoma, indicating 
that Parkin-deficient mice are susceptible to spontaneous 
tumorigenesis [39].  Parkin+/−  Apc+/min mice show higher 
incidence of intestinal adenomas and earlier onset of all 
adenoma stages (monocryptal, oligocryptal, and estab-
lished) than  Parkin+/+  Apc+/min mice [27]. Work from 
our laboratory has shown that  Parkin−/− mice are more 
susceptible than  Parkin+/+ mice to γ-irradiation-induced 
tumorigenesis, although the resulting tumor spectrum 
(mainly lymphomas) is similar in the two strains [40].

Mechanisms of Parkin‑mediated tumor suppression
Exactly how Parkin may suppress tumor formation is 
poorly understood. Mechanisms proposed in the litera-
ture are discussed below.

Cell cycle and proliferation
Parkin has been reported to play an important role in 
inhibiting cell cycle progression (Fig. 2). Parkin ubiquit-
inates and degrades cyclin E [41, 42], which in turn binds 
to CDK2 to promote the transition from G1 to S phase 
of the cell cycle. Parkin also ubiquitinates and degrades 
cyclin D, a regulator of CDK4/6 [43]. In this way, Par-
kin induces G1/S cell cycle arrest and inhibits cell pro-
liferation. Parkin also induces expression of Myt1, which 

Fig. 1 Parkin alterations in human cancers. Summary of Parkin alterations associated with different cancers, based on the datasets in cBioPortal. 
Deletions, mutations and amplifications are depicted in different colors
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phosphorylates CDK1 to inhibit CDK1 activity and cause 
G2/M cell cycle arrest in HeLa cells treated with TNF-α 
[44].

In addition to regulating cell cycle, Parkin also regulates 
mitosis. Parkin interacts with anaphase-promoting com-
plex/cyclosome (APC/C) co-activators Cdc20 and Cdh1 
to mediate the degradation of several key mitotic regu-
lators, including cyclin B1 and Aurora A/B [45]. Parkin 
deficiency results in overexpression of cyclin B1, Aurora 
A/B and other mitotic regulators, which leads to mitotic 
defects, genomic instability and tumorigenesis [45], sug-
gesting that the Parkin-Cdc20/Cdh1 complex is impor-
tant to ensure proper mitosis. In cells treated with the 
proteasome inhibitor lactacystin, Parkin forms a com-
plex with γ-tubulin and then is recruited to the centro-
some through a microtubule-dependent mechanism [46], 
where it may assist in mitotic spindle formation. Parkin 
deficiency induces spindle multipolarity and misorienta-
tion as well as multinucleation, promoting tumorigenesis 
[47]. These results suggest that Parkin may help suppress 
tumor formation by ensuring proper mitosis.

Apoptosis
In contrast to promoting survival of neurons [48, 49], 
Parkin appears to promote apoptosis of cancer cells 
(Fig.  3). Parkin has been reported to promote apopto-
sis induced by mitochondrial depolarization [50]. In 
response to mitochondrial depolarization caused by 
CCCP treatment, Parkin promotes ubiquitination and 
degradation of the Bcl-2 family member Mcl-1, which 
opens the Bax/Bak channel and thereby sensitizes cells 
to apoptosis. This Parkin-dependent apoptosis requires 
PINK1 and can be blocked by knockdown of Bax and Bak 
[50]. Restoration of Parkin expression in cervical cancer 
HeLa cells acts via a poorly understood mechanism to 
reduce levels of survivin, an inhibitor of apoptosis (IAP) 

family member that inhibits caspase, thereby sensitizing 
the cells to TNF-α-induced apoptosis [51]. Parkin sensi-
tizes breast cancer MCF7 cells to apoptosis induced by 
microtubule-stabilizing drugs such as paclitaxel; Parkin 
binds to the outer surface of microtubules and increases 
paclitaxel–microtubule interaction [52]. Parkin also 
promotes apoptosis induced by HDAC inhibitors in 
hepatocellular carcinoma cells via a poorly understood 
mechanism [53]. In mouse hepatocytes, Parkin induces 
apoptosis by transcriptionally down-regulating follistatin, 
which antagonizes the pro-apoptotic cytokine activin [54, 
55]. Conversely, Parkin deficiency in  Parkin−/− mouse 
hepatocytes up-regulates follistatin to inhibit apoptosis 
induced by chemotherapeutic agents such as cisplatin, 
doxorubicin and etoposide [39]. These results suggest 
that Parkin normally functions to keep follistatin expres-
sion at a low level and thereby limit hepatocyte prolif-
eration, which may explain the elevated occurrence of 
hepatic tumor development in  Parkin−/− mice [39].

Migration, invasion and metastasis
Metastasis is a major cause of cancer-related death. Par-
kin expression is significantly lower in tumors with lymph 
node metastases than in tumors without such metastases 
in the case of clear-cell renal cell carcinoma [56], pancre-
atic cancer and nasopharyngeal carcinoma [47, 57]. Work 
from our laboratory has shown that Parkin is frequently 
down-regulated in breast cancer, and that lower Parkin 
expression correlates with worse distant metastasis-free 
survival [24]. These results suggest that Parkin plays an 
important role in suppressing metastasis.

One mechanism through which Parkin may help sup-
press metastasis is by ubiquitinating HIF-1α and trigger-
ing its degradation, thereby inhibiting the migration and 
invasion of breast cancer cells [24] (Fig. 4). Stabilization 
and accumulation of HIF-1α in cancer cells promote 
metastasis [58, 59], and HIF-1α expression correlates 
inversely with Parkin expression in breast cancer speci-
mens. Given that HIF-1α regulates, in addition to metas-
tasis, several other cellular processes, including cell 
survival, metabolic reprogramming, and angiogenesis 

Fig. 2 Parkin regulates cell cycle and mitosis. → : promote; : 
inhibit

Fig. 3 Parkin promotes apoptosis in cancer
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[58, 59], Parkin may exert its tumor suppressive function 
by inhibiting these processes, which should be addressed 
in future studies.

Metabolic reprogramming
Metabolic reprogramming is a hallmark of cancers and 
plays a key role in cancer progression by driving cancer 
cell proliferation, survival and metastasis [60–64]. Meta-
bolic reprogramming in cancer can be driven by the inac-
tivation of tumor suppressors such as p53 and PTEN, 
or activation of oncoproteins such as HIF-1α, Myc and 
PI3K [60–63, 65]. The most well characterized metabolic 
change in cancers is enhanced glycolysis, also known as 
the Warburg effect [60–63, 65]. Work from our group 
has shown that p53, which is known to suppress glyco-
lysis [61, 65–68], could transcriptionally activate Parkin 
expression by binding to the p53-responsive elements in 
PARK2 [40]. Parkin suppresses glycolysis and promotes 
mitochondrial oxidative phosphorylation. How Parkin 
inhibits glycolysis is poorly understood. One possibility is 
that Parkin-mediated ubiquitination and degradation of 
HIF-1α prevents HIF-1α from transcriptionally activating 
the proteins involved in glycolysis [24] (Fig. 5). Similarly, 
another group reported that p53 transcriptionally acti-
vates Parkin in glioma [69]. The same group reported that 

Parkin, independently of its E3 ligase activity, transcrip-
tionally represses p53 expression in mouse and human 
brains affected by ARJPD, suggesting that p53 can form 
a negative feedback loop with Parkin in the brain [70]. 
Further studies are needed to clarify whether this nega-
tive feedback loop exists in tissues outside the brain and 
in tumors.

Similar to p53, PTEN is involved in Parkin-mediated 
metabolic regulation. Parkin deficiency promotes PTEN 
inactivation through S-nitrosylation and ubiquitination, 
which activates PI3K/AKT signaling in cancer cells [71] 
(Fig.  5). PI3K/AKT signaling drives metabolic repro-
gramming in cancer cells, including promotion of glyco-
lysis [60–64].

Parkin interacts with PKM2, a glycolytic enzyme that is 
frequently overexpressed in cancer, and catalyzes ubiqui-
tin conjugation to PKM2 [72]. This ubiquitination inhib-
its PKM2 activity without destabilizing the protein. Loss 
of Parkin function in cancer cells enhances PKM2 enzy-
matic activity, thus promoting glycolysis [72] (Fig. 5).

These studies suggest that one mechanism by which 
Parkin suppresses tumorigenesis is by inhibiting 
glycolysis.

Mitophagy
Parkin-mediated neuroprotection involves regulation 
of mitophagy [9, 10, 16]. In response to mitochondrial 
damage, the serine/threonine kinase PINK1 is stabi-
lized and accumulates on the outer membrane of the 
damaged mitochondria, where it phosphorylates Parkin 
and thereby activates its E3 ubiquitin ligase activity and 
recruits it from cytosol to damaged mitochondria [9, 16]. 
Parkin ubiquitinates outer mitochondrial membrane pro-
teins, triggering mitophagy that selectively clears dam-
aged mitochondria [9, 16]. Thus, PINK1 and Parkin work 
together to prevent PD by eliminating the accumulation 
of damaged mitochondria, ROS and mitochondrial DNA 
mutations [9, 10, 16].

Consistent with the idea that Parkin is important for 
both mitophagy regulation and tumor suppression, 
mitophagy defects have been linked with cancer devel-
opment [73, 74]. In parallel, BNIP3 and Nix (also named 
BNIP3L) induce mitophagy independently of Parkin and 
suppress growth of certain types of tumors [10, 73, 74]. 
BNIP3 is silenced in liver, lung, pancreatic and colorectal 
cancers [75–77], and this loss leads to mitophagy defects, 
increases glycolysis and ROS production, and promotes 
growth and metastasis of breast cancer cells in mouse 
models [78, 79]. Similarly, knockdown of Nix promotes 
tumorigenesis in mouse models [80]. These studies sug-
gest that loss of mitophagy mediated by Parkin or BNIP3/
Nix contributes to the progression of certain types of 
cancers.

Fig. 4 Parkin inhibits cancer metastasis by ubiquitinating HIF-1α

Fig. 5 Parkin inhibits glycolysis in cancer
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Analogously to the dual role of autophagy in can-
cer, mitophagy may promote or suppress tumorigenesis 
depending on the cellular circumstances [10, 73, 74]. 
Future studies should examine the role of mitophagy in 
the development and progression of different types of 
cancers.

Conclusions and perspectives
Increasing evidence from cell culture systems, xenograft 
tumor models, Parkin knockout mouse models, and clin-
ical studies suggests that Parkin is an important tumor 
suppressor. How the protein suppresses tumor growth is 
poorly understood, with many questions requiring fur-
ther study. One question is how Parkin inhibits apopto-
sis and promotes survival in neuronal cells, yet promotes 
apoptosis in various types of cancer cells and mouse 
hepatocytes. One possible explanation is brain-specific 
regulation of p53 by Parkin. Induction of apoptosis is an 
important mechanism by which p53 exerts its tumor sup-
pressive function in cancers [81, 82]. Interestingly, p53 
activation has been observed in the brain of PD patients 
as well as mouse models for PD mice, suggesting that p53 
activation and p53-mediated apoptosis contribute to PD 
[83–87]. Parkin inhibits p53 activation in the brain [70]. 
Accordingly, inhibition of p53-mediated apoptosis could 
be an important mechanism that contributes to the neu-
roprotective effect of Parkin. It remains unclear whether 
Parkin affects p53 activation or p53-mediated apoptosis 
in cancer cells. Future work should address this question.

Another unanswered question is why Parkin is down-
regulated in many types of cancers. This cannot be 
explained solely on the basis of mutations, loss of het-
erozygosity or copy number, and promoter hypermeth-
ylation. Future studies should examine whether the 
transcriptional regulation of PARK2, epigenetic modifi-
cations of the gene, or post-translational modifications 
of Parkin (e.g., include phosphorylation, ubiquitina-
tion, sumoylation, neddylation, and S-nitrosylation) are 
altered in cancer [22, 28].

The third question is whether and how the anti-cancer 
activity of PD relates to the function of Parkin in PD. 
Many epidemiological studies have indicated an asso-
ciation between PD and reduced risk of prostate, lung, 
bladder, stomach, uterine, and colorectal cancers, and 
increased risk of melanoma, brain and breast cancers 
[88–91]. The association between PD and cancer risk 
appears to be complex and may be linked to factors such 
as ethnicity: PD among Asians in one study was linked 
to increased risk of brain, kidney, uterine, stomach and 
lung cancers [92]. Future studies should examine why PD 
shows opposite associations with different types of can-
cers, or even opposite associations with the same cancer 
in different patient populations. Future studies should 

also examine the potential role of Parkin gene mutations 
in mediating the association between PD and cancer risk. 
Such analyses will need to take genetic, epigenetic and 
environmental factors into account.

The role of Parkin in PD is well established, and its role 
as a tumor suppressor has recently emerged. How Par-
kin protects against PD and cancer is poorly understood. 
Future studies in this area may lead to novel therapeutic 
targets and strategies for both diseases.
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