
Kuo and Ann  Cancer Commun  (2018) 38:47  
https://doi.org/10.1186/s40880-018-0317-9

REVIEW

When fats commit crimes: fatty acid 
metabolism, cancer stemness and therapeutic 
resistance
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Abstract 

The role of fatty acid metabolism, including both anabolic and catabolic reactions in cancer has gained increas‑
ing attention in recent years. Many studies have shown that aberrant expression of the genes involved in fatty acid 
synthesis or fatty acid oxidation correlate with malignant phenotypes including metastasis, therapeutic resistance 
and relapse. Such phenotypes are also strongly associated with the presence of a small percentage of unique cells 
among the total tumor cell population. This distinct group of cells may have the ability to self‑renew and propagate 
or may be able to develop resistance to cancer therapies independent of genetic alterations. Therefore, these cells 
are referred to as cancer stem cells/tumor‑initiating cells/drug‑tolerant persisters, which are often refractory to cancer 
treatment and difficult to target. Moreover, interconversion between cancer cells and cancer stem cells/tumor‑
initiating cells/drug‑tolerant persisters may occur and makes treatment even more challenging. This review highlights 
recent findings on the relationship between fatty acid metabolism, cancer stemness and therapeutic resistance and 
prompts discussion about the potential mechanisms by which fatty acid metabolism regulates the fate of cancer cells 
and therapeutic resistance.
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Background
Fatty acid (FA) metabolism is composed of anabolic and 
catabolic processes that maintain energy homeostasis. 
FA synthesis, which converts various types of nutrients 
into metabolic intermediates, is essential for cellular pro-
cesses such as maintaining cell membrane structure and 
function, storing energy and mediating signaling. Cells 
generate energy by breaking down FAs via FA oxidation 
(FAO), also known as β-oxidation [1, 2]. A loss of bal-
ance between FA synthesis and oxidation may result in 
inadequate FA levels, leading to lipid accumulation. Lipid 

accumulation has been observed in many types of cancer, 
including brain, breast, ovarian and colorectal cancers 
[3–5] and has recently drawn increased attention. This 
has motivated scientists to understand the molecular 
mechanisms by which FA metabolism participates in the 
pathophysiological processes of cancer.

Cancer stem cells (CSCs), also referred to as tumor-
initiating cells (TICs), have been identified in many 
types of solid tumors and often result in tumor recur-
rence because of their self-renewal and tumorigenic 
properties. CSCs/TICs can be defined by in vitro tum-
orsphere formation assays and in vivo limiting dilution 
assays in conjunction with surface marker analyses [6, 
7]. How CSCs originate remains under debate. Pos-
sible explanations are that: (1) adult stem cells acquire 
mutations to become malignant or (2) neoplastic, dif-
ferentiated cells receive external stimuli and undergo 
reprogramming to a progenitor or stem-like state [8]. 
Recent findings on the interconversion of neoplastic 
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epithelial cells to CSC-like cells within a mixed tumor 
population suggest that a dynamic reprogramming 
process may occur during the transition state [9–12]. 
This bidirectional conversion or so-called cancer cell 
plasticity may emerge as a challenge for cancer treat-
ment [13, 14]. Therefore, delineating the mechanisms 
of cancer cell plasticity and identifying regulators of the 
process that can be manipulated to prevent the conver-
sion of cancer cells to CSCs may reduce the incidence 
of cancer recurrence.

A similar idea applies to the development of thera-
peutic resistance. Cancer treatments typically kill most 
fast-growing tumor cells. However, a subpopulation of 
cells may become tolerant of the drug, enter a state of 
dormancy and later evolve mechanisms of resistance. 
The cells in this small population are called drug-toler-
ant persisters (DTPs) and are considered independent 
from cells that acquire mutations to develop resistance. 
The interconversion between the drug-sensitive state and 
the tolerant state is thought to be controlled by growth 
factor signaling or epigenetic regulation [15–18]. For 
example, DTPs arising from tyrosine kinase inhibitor-
resistant lung cancer cells are regulated by insulin growth 
factor signaling and a lysine demethylase, KDM5A [18]. 
In addition, these DTPs express the stem cell marker 
CD133 and share some of the CSC properties. Therefore, 
when appropriate, CSCs/TICs/DTPs will be used hereaf-
ter to describe the small populations of cells possessing 
the abilities to confer drug resistance and to repopulate. 
Understanding the mechanisms by which cancer cells 
progress into CSCs/TICs/DTPs will offer opportunities 
to prevent therapeutic resistance.

The plasticity of cancer cells and the genetic-independ-
ent acquisition of therapeutic resistance may be tightly 
associated with metabolic reprogramming. Altered 
metabolism is one of the hallmarks of cancer and has 
also been observed in CSCs (reviews in [19–22]). Hirsch 
et al. have shown that metformin, a blood sugar-lowering 
drug specifically targets breast CSCs and sensitizes CSCs 
to doxorubicin [23]. Metformin not only activates AMP-
activated kinase (AMPK), but also inhibits complex I of 
the mitochondrial respiratory chain [24], suggesting that 
CSCs may have distinct metabolic features that are tar-
getable. A study reveals that the loss of fructose-1,6-bi-
phosphatase (FBP1) in basal-like breast cancer inhibits 
oxidative phosphorylation (OXPHOS), increases glyco-
lysis and CSC properties [25]. Moreover, mesenchymal 
glioma stem cells derived from clinical specimens dem-
onstrate elevated glycolytic activity. In contrast, mito-
chondrial biogenesis and OXPHOS are also critical for 
maintaining CSC populations [26, 27]. These findings 
suggest that there is metabolic plasticity in the CSC pop-
ulation and that modulating the utilization of metabolic 

pathways could influence the tumorigenic capacity of 
tumor cells.

While increasing evidence has revealed the role of 
altered energy metabolism during cancer progression, 
relatively fewer studies have focused on FA metabolism. 
In this review, we aim to evaluate recent studies and to 
summarize their findings on the role of FA metabolism 
in cancer malignant phenotypes, especially therapeutic 
resistance and stemness. We wish to stimulate discussion 
of the mechanisms by which cancer cells may acquire 
malignant properties via altered FA metabolism.

Fatty acid metabolism in cancer progression 
and therapeutic resistance
The lipogenic phenotype is one of the metabolic hall-
marks of cancer. First observed in the 1950s, de novo 
FA synthesis is the major source of FAs for cancer cells 
[28]. Rapidly growing cancer cells require relatively large 
amounts of FAs to support processes such as membrane 
formation and signaling. Cytosolic acetyl-CoA is the 
building block for FAs, and can be generated from citrate 
or acetate. Citrate comes from either glycolysis followed 
by the tricarboxylic acid (TCA) cycle or from glutaminol-
ysis followed by reductive carboxylation; it is then cleaved 
by ATP-citrate lyase (ACLY) to form cytosolic acetyl-
CoA and oxaloacetate. Acetate obtained from either 
external or internal sources is ligated to CoA by acyl-CoA 
synthetase short-chain family member 2 (ACSS2) to form 
acetyl-CoA. Next, acetyl-CoA is carboxylated by acetyl-
CoA carboxylase (ACC) to form malonyl-CoA. This is 
followed by a series of condensation processes catalyzed 
by fatty acid synthase (FASN) in the presence of nicotina-
mide adenine dinucleotide phosphate (NADPH) to pri-
marily produce palmitate for subsequent FA elongation, 
desaturation and lipid synthesis [1, 29] (Fig. 1).

In tumors, many lipogenic enzymes are up-regulated 
and correlate with cancer progression (Fig.  1). Over-
expression of FASN has been frequently reported in a 
wide variety of cancers, including breast, ovarian, endo-
metrial and prostate cancers, and is associated with 
poor prognosis and resistance to chemotherapy [29–
35]. For example, increased expression of FASN is asso-
ciated with resistance to cisplatin in breast and ovarian 
cancers and the resistance can be reversed by blocking 
FASN with an inhibitor, C75 [30, 31]. FASN increases 
DNA repair activity by up-regulating poly(ADP-ribose) 
polymerase 1 resulting in resistance to genotoxic agents 
[35]. In cancer cells, expression of FASN is modu-
lated by sterol regulatory element-binding protein 1c 
(SREBP1) and proto-oncogene FBI-I (Pokemon) via 
dysregulated mitogen activated protein kinase or phos-
phoinositide 3-kinase/AKT pathways under hormonal 
or nutritional regulation [1, 36]. FASN expression can 
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also be regulated post-translationally. The deubiquit-
inase USP2a is often up-regulated and stabilizes FASN 
in prostate cancer [37].

ACLY serves as a central hub for connecting glucose 
and glutamine metabolism with lipogenesis and initiat-
ing the first step of FA synthesis [38]. Elevated ACLY 
levels have been observed in gastric, breast, colorectal 
and ovarian cancers and are linked to malignant phe-
notypes and poorer prognosis [39–42]. In particular, 
overexpression of ACLY in colorectal cancer leads to 
resistance to SN38, an active metabolite of irinotecan 
[42]. Like FASN, the transcription of ACLY is also reg-
ulated by SREBP1 [43], and it can be regulated post-
translationally. Phosphorylation at ACLY serine 454 
by AKT is increased in lung cancer and is correlated 
with enhanced activity of ACLY [44]. ACLY can also 

be phosphorylated by cAMP-dependent protein kinase 
and nucleoside diphosphate kinase [45, 46].

Overexpression of ACC  has been found in breast, gas-
tric and lung cancers [47–49]. Mammals express two 
isoforms of ACC, ACC1 and ACC2, which have distinct 
roles in regulating FA metabolism. ACC1 is present in 
the cytoplasm, where it converts acetyl-CoA to malo-
nyl-CoA. ACC2 is localized to the mitochondrial mem-
brane, where it prevents acyl-CoA from being imported 
into the mitochondria through carnitine/palmitoyl-
transferase 1 (CPT1) for FAO and entering the TCA 
cycle to generate energy. Both ACC1 and ACC2 can 
be regulated transcriptionally and post-translationally 
by multiple physiological factors, including hormones 
and nutrients [50, 51]. mRNA expression of ACC1 and 
ACC2 is regulated by SREBP1, carbohydrate-responsive 

Fig. 1 Fatty acid metabolism in cancer. Key enzymes involved in fatty acid (FA) metabolism. Orange‑highlighted enzymes have been reported as 
altered in cancer or associated with cancer stemness. ACC  acetyl‑CoA carboxylase, ACLY ATP citrate lyase, ACSS2 acyl‑CoA synthetase short‑chain 
family member 2, FASN fatty acid synthase, CPT1/2 carnitine/palmitoyl‑transferase 1/2, CACT  carnitine acylcarnitine translocase, FAO fatty acid 
oxidation, IDH isocitrate dehydrogenase, TCA cycle tricarboxylic acid cycle, PDK pyruvate dehydrogenase kinase, PDH pyruvate dehydrogenase, P 
phosphorylation, U ubiquitylation, Ac acetylation
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element-binding protein and liver X receptors [52, 53]. 
Additionally, ACC1 and ACC2 can be phosphorylated 
at serine 80 (serine 79 in mouse) and serine 222 (serine 
212 in mouse), respectively, by tumor suppressor AMPK 
to inhibit their activities under ATP-depleted condition 
[50, 54–57]. The phosphorylation at serine 80 of ACC1 
is associated with a metastatic phenotype in breast and 
lung cancers and is also responsible for resistance to 
cetuximab in head and neck cancer [58, 59].

There are 26 genes encoding acyl-CoA synthetase, 
which have distinct affinities for short-, medium-, long- 
or very long-chain FAs [60]. Overexpression of cyto-
solic ACSS2, one of the three family members of short 
chain acyl-CoA synthetase, can lead to acetate addic-
tion in breast, ovarian, lung and brain cancers when 
nutrients or oxygen are limited; this overexpression is 
correlated with cancer progression and worse progno-
sis [61–63]. Mitochondrial ACSS1 is up-regulated in 
hepatocellular carcinoma and is associated with tumor 
growth and malignancy [64]. Although the regulation of 
ACSS expression remains poorly understood, it has been 
reported that ACSS genes are controlled by SREBP [65, 
66].

In addition to the highly activated lipogenic pathway, 
FA catabolism is also important for maintaining cancer 
cell survival and contributing to chemotherapy resist-
ance. The mitochondrial inner membrane is imperme-
able to long-chain acyl-CoAs; thus, the CPT system is 
required for transporting long-chain acyl-CoAs into the 
mitochondria from the cytoplasm. Three components 
are involved in this transporting system: CPT1, the car-
nitine acylcarnitine translocase (CACT) and CPT2 [67]. 
There are three currently known isoforms of CPT1 dis-
tributed in different tissues: CPT1A, CPT1B and CPT1C 
[68]. Knockdown of CPT1A leads to down-regulation 
of mTOR signaling and increases of apoptosis, suggest-
ing CPT1A promotes the growth of prostate cancer cells 
[69]. Moreover, CPT1A depletion can sensitize prostate 
cancer cells to anti-androgen treatment, enzalutamide 
[70]. It has also been reported that CPT1A is positively 
correlated with histone deacetylase activity to enhance 
the tumorigenesis of breast cancer [71]. The expres-
sion of CPT1A can be regulated by nuclear receptors, 
PPARs and the PPARγ coactivator (PGC-1) [72]. PPARs 
have also been implicated as playing important roles in 
cancer progression [73]. CPT1A has also been shown 
to support the proliferation of leukemic cells and the 
knockdown or inhibition of CPT1A by a pharmacologi-
cal inhibitor etomoxir (ETO) sensitizes leukemic cells to 
a chemotherapeutic drug, cytarabine [74]. In addition to 
CPT1A, AMPK regulates CPT1C expression to promote 
tumor growth upon metabolic stress in several types of 
cancer cells. Down-regulation of CPT1C enhances the 

sensitivity to mTOR inhibitor, rapamycin in cancer cells 
[75]. Only a few studies have reported the dysregulated 
CPT1B expression in colorectal and bladder cancers [76, 
77]. A recent study has revealed the relationship between 
STAT3-induced CPT1B expression and chemoresistance 
in breast cancer cells [78].

In comparison to CPT1, relatively less studies have 
pointed out the roles of CPT2 and CACT in cancer. 
Knockdown of CPT2 significantly impedes the growth 
of MYC-overexpressing triple-negative breast can-
cer (TNBC) cells [79]. Another report also shows that 
depletion of CPT2 hinders TNBC growth via the down-
regulation of the phosphorylated Src levels [80]. These 
data suggest an oncogenic role of CPT2 in TNBC. On 
the other hand, a meta-analysis has revealed that higher 
CPT2 expression is correlated with better outcome in 
colorectal cancer patients [81]. CACT has been found to 
be overexpressed in prostate cancer cells and down-regu-
lated in bladder cancer [76, 82]. Therefore, the exact role 
of CACT in cancer progression and therapeutic resist-
ance remains uncertain.

Fatty acid synthesis and cancer stemness
Similar to the expression patterns of lipogenic genes in 
cancer cells, several lipogenic genes are dysregulated in 
CSCs and are critical for CSC expansion and survival. 
However, how these genes are regulated in CSCs and why 
CSCs depend upon their lipogenic potential require fur-
ther investigation. A recent study reported that glioma 
stem cells prefer to utilize glucose and acetate as carbon 
sources, compared with differentiated glioma cells [83]. 
In that study, FASN was concurrently expressed with 
glioma stem cell markers, including SOX2, CD133 and 
Nestin. In glioma stem cells, inhibition of FASN by the 
fatty acid synthesis inhibitor cerulenin decreases expres-
sion of glioma stem cell markers and reduces the number 
of tumorspheres formed [83]. In pancreatic CSCs, FASN 
is up-regulated and the inhibition efficacy of cerulenin 
is greater on pancreatic CSCs than on pancreatic cancer 
cells [84]. In breast CSCs, down-regulation of FASN by 
metformin via the induction of miR-193b leads to inhi-
bition of mammosphere formation [85]. The antioxidant-
like plant polyphenol resveratrol also decreases FASN to 
promote apoptosis in breast CSCs [86]. Taken together, 
these studies suggest that FASN is involved in promoting 
CSC survival.

ACLY also plays an important role in CSCs. In an 
in  vitro lung cancer cell model, knockdown of ACLY 
inhibits epithelial–mesenchymal transition (EMT), a 
phenomenon often linked to cancer stemness, and results 
in a decrease of tumorsphere formation [87]. Treating 
MCF7 breast cancer cells with soraphen A, a specific 
inhibitor of ACC, significantly reduces the population 
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of CSCs, as defined by CSC marker ALDEFLUOR. The 
effects of this inhibition are even greater in MCF7 cells 
overexpressing the proto-oncogene human epidermal 
growth factor receptor 2 (HER2) [88].

Elevated levels of unsaturated FAs have been observed 
in ovarian CSCs and it was recently reported that desat-
urases control the fate of ovarian CSCs [89, 90]. In 
these studies, inhibition of desaturases by CAY10566 
or SC-26196 diminishes cancer stemness by reduc-
ing stemness markers, including SCD1, ALDH1A1 and 
SOX2. Blockade of FA desaturation impairs NF-κB sign-
aling, which also directly regulates the unsaturation of 
FAs.

FAO and cancer stemness
FAO is composed of a cyclical series of catabolic reac-
tions and results in the shortening of fatty acids (two 
carbons per cycle). It is an essential source of reduced 
nicotinamide adenine dinucleotide (NADH), flavin ade-
nine dinucleotide (FADH2), NADPH and ATP. NADH 
and FADH2 enter the electron transport chain to pro-
duce ATP, and NADPH protects cancer cells against 
metabolic stress and hypoxia [67]. As the key rate-lim-
iting enzyme of FAO, CPT1 conjugates fatty acids with 
carnitine for translocation into the mitochondria; there-
fore, it controls FAO directly and thus facilitates cancer 
metabolic reprogramming. CPT1 also shares multiple 
connections with many other cellular signaling pathways 
often dysregulated in cancers, such as aerobic glycolysis, 
FAS, p53/AMPK axis, mutated RAS, mTOR and STAT3 
[91, 92]. This evidence positions CPT1 as a multifunc-
tional mediator in cancer pathogenesis and resistance to 
treatment.

In HER2-positive breast cancer cells, pharmacologi-
cal inhibition of PPARγ by GW9662 results in a decrease 
in CSC number and down-regulated expression of CSC 
markers, presumably via increased production of reactive 
oxygen species (ROS) [93]. Whether the effects of PPARγ 
inhibition perturb the activity of FAO in HER2-positive 
breast CSCs remains unclear.

An interesting phenomenon has been observed in 
both leukemia and breast cancer. In leukemic cells, 
FAO is uncoupled from ATP synthesis and FA synthe-
sis is enhanced to support FAO. Therefore, inhibiting 
FAO using ETO reduces the numbers of quiescent leu-
kemic progenitors, which are able to initiate leukemia in 
the immune-deficient mice [74]. In breast cancer cells, 
prolonged treatment with the metabolic intermediate 
dimethyl α-ketoglutarate (DKG) leads to accumulation 
of succinate and fumarate, which induces hypoxia-induc-
ible factor 1α (HIF-1α) to promote both glycolysis and 
OXPHOS to enable the plasticity of breast cancer cells. 
However, the increased OXPHOS is uncoupled from 

ATP synthesis and can be dampened by ETO, so the 
detected oxygen consumption presumably comes from 
FAO. Moreover, inhibiting both glycolysis and FAO by 
dichloroacetate and ETO respectively can decrease DKG-
induced tumorsphere formation and accumulation of 
FAs was observed in DKG-treated breast cancer cells, 
suggesting that increased FAs may be utilized to support 
FAO [94]. It is likely that FA synthesis and FAO feed-
forward with one another. Additional possible sources of 
FAs may come from reductive carboxylation [95, 96] or 
extracellular lysophospholipids through macropinocyto-
sis [97]. Indeed, altered lipid metabolism appears to play 
a role in TNBC: TNBC and non-TNBC patient tissues 
can be discriminated based on markers of lipid metabo-
lism [98, 99].

NANOG, a transcription factor and known stem cell 
marker, was recently reported to promote mitochondrial 
FAO in CSCs and support liver oncogenesis and drug 
resistance [100]. In that report, inhibition of FAO by 
ETO limits the expansion of CSCs and sensitizes CSCs 
to sorafenib kinase inhibitor treatment. In this case, it is 
possible that NANOG-positive cells become CSCs/TICs/
DTPs to exert resistance to sorafenib. How NANOG 
regulates FAO and how FAO promote resistance warrant 
further investigation.

More recently, breast adipocyte-derived leptin was 
shown to activate JAK/STAT3 signaling through the lep-
tin receptor to up-regulate CPT1B, leading to enhanced 
FAO in breast CSCs [78]. FAO is critical for maintain-
ing breast CSCs and is associated with chemoresistance. 
Blocking FAO with perhexiline, an FDA-approved drug 
for treatment of angina and heart failure [101], can sen-
sitize chemoresistant breast cancer cells to the mitotic 
inhibitor paclitaxel.

Perspectives
CSCs/TICs, a minor population of cells capable of self-
renewal and tumor initiation, are tightly associated with 
cancer relapse, metastasis and chemoresistance. The the-
ory of CSC origin is currently based on two models: hier-
archical and stochastic. The classic hierarchical model 
suggests that only a subset of cancer cells has the abil-
ity to self-renew and divide [8, 102]. On the other hand, 
accumulating evidence supports the stochastic model 
that every cancer cell has the potential to be repro-
grammed into a CSC when the appropriate cues are pre-
sent [9–12]. DTPs are a relatively new concept in cancer 
treatment resistance. This subpopulation is responsible 
for the development of drug resistance and shares similar 
properties with CSCs/TICs, but does not fully resemble 
them. The chromatin state is altered in DTPs [18], sug-
gesting that the chromatin has undergone remodeling, 
leading to reprogramming. However, how cancer cells are 
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reprogrammed and what the appropriate cues are remain 
largely unknown. Aberrant FA metabolism in cancer has 
also been correlated with malignant phenotypes, poor 
prognosis and chemoresistance. Dysregulation of FA 
metabolism not only accumulates FAs, but also gener-
ates extra metabolic intermediates, which may be utilized 
as signaling molecules for enhancing oncogenic signal-
ing. In the previous sections, we summarized irregu-
lar FA metabolism in CSCs/TICs. However, the exact 
mechanism of FA metabolism in regulating CSCs/TICs/
DTPs survival and expansion remains unclear. Under-
standing whether FAs serve as building blocks for CSCs/
TICs/DTPs and/or whether the metabolic intermediates 
generated from FA metabolism are important signaling 
molecules for maintaining CSCs/TICs/DTPs or repro-
gramming cancer cells to CSCs/TICs/DTPs has implica-
tions for combating cancer therapeutic resistance.

How FA metabolism is regulated in CSCs also remains 
an outstanding question. Since FAs are not only impor-
tant nutrients in human metabolism but also play a signif-
icant role in the composition of lipid bilayer membranes, 
it is likely that FA metabolism determines cell fate in a 
growing number of physiological and pathological condi-
tions. The therapeutic manipulation of FAO holds great 
promise for the diagnosis and treatment of a wide range 
of human diseases in clinical settings. The master regu-
lator of FA synthesis, SREBP1, regulates FASN expres-
sion to activate FA synthesis in cancer cells [1]. However, 
very little is known about the role of SREBP1 in CSCs/
TICs/DTPs. SREBP1 binds to c-Myc to promote pluripo-
tent gene expression in somatic cells [103], suggesting a 
potential role for SREBP1 in promoting cancer stemness. 
In breast cancer cells, leptin and transforming growth 
factor β (TGFβ) co-regulate AMPK-mediated ACC phos-
phorylation, implying that FAO is also affected by these 
signals [58]. Leptin signaling can also increase CPT1B 
expression via the JAK/STAT3 pathway to promote FAO 
[78]. Both leptin and TGFβ are secreted by adipose tis-
sue [104–106], suggesting that FA metabolism in cancer 
cells may be regulated by the surrounding adipose tis-
sue. Indeed, obesity has been associated with increased 
cancer risk and tumor progression [107, 108]. It is pos-
sible that adipose tissue in the tumor microenvironment 
secretes hormones and growth factors to reprogram FA 
metabolism in cancer cells and to drive cancer cell plas-
ticity and promote cancer stemness.

Inhibition of FASN reduces numbers of CSCs [83, 
85, 86], suggesting that FA synthesis is important for 
CSC maintenance, but how FAs facilitate CSC survival 
and expansion is unknown. Unsaturated FAs accumu-
late in ovarian CSCs and can activate NF-κB to regulate 
downstream stemness gene expression [89]. However, 
the detailed mechanism of how these unsaturated FAs 

activate NF-κB remains unclear. The specific roles of 
various types of FAs in maintaining CSCs/TICs/DTPs are 
also unknown. Future studies could use lipidome analysis 
to identify the composition of FA species and their func-
tion in CSCs/TICs/DTPs. Further efforts focusing on the 
identification and quantification of many metabolites 
from FA metabolism in a biological sample as possible 
will serve as a translatable tool to provide personalized 
medicine for individuals.

We suggest that preclinical and clinical studies are 
needed to address several key mitochondrial FAO-related 
questions. The first question is why and how does FAO 
enable the survival of CSCs/TICs/DTPs. We posit that 
FAO could serve three purposes: first, as a means to 
reduce lipotoxicity from lipid intermediates [109]; sec-
ond, to energetically and efficiently generate ATP (e.g. in 
long-lived cell types, such as memory T cells, that depend 
on FAO for survival [110]; and third, to contribute to the 
accumulation of acetyl-CoA in the cytoplasm for protein 
acetylation and FA synthesis. It is still not fully under-
stood why CSCs/TICs/DTPs rely on FAO for survival. A 
possible explanation is that during the process of FAO, 
an increase of NADPH and ATP helps CSCs/TICs/DTPs 
to survive. Elevated ROS is detrimental to CSCs/TICs/
DTPs [111, 112] and NADPH serves as an antioxidant 
to reduce ROS levels. Consistent with this, inhibition of 
FAO reduces NADPH and ATP, leading to an increase 
of ROS and cell death in glioma [113]. Another possibil-
ity is that increased FAO generates increased oxidized 
nicotinamide adenine dinucleotide  (NAD+), a cofactor 
for sirtuins (SIRTs). SIRT1–7 activity is regulated by the 
 NAD+/NADH ratio. This family of deacetylases plays 
an important role in regulating stemness, tumorigenesis 
and many other critical cellular processes [114]. Block-
ing FAO by ETO results in decreased  NAD+/NADH ratio 
and SIRT1 activity [115].

The next question is how does FA metabolism par-
ticipate in the reprogramming process from cancer cells 
to CSCs/TICs/DTPs. Acetyl-CoA is a central metabolic 
intermediate at which multiple metabolic pathways con-
verge. It is critical for initiating de novo FA synthesis and 
for incorporation into the TCA cycle to generate energy 
following FAO. Acetyl-CoA can also be an important 
source of histone or protein acetylation, which regu-
lates a wide range of gene expression and protein func-
tions. Acetyl-CoA homeostasis is controlled by several 
key enzymes. ACLY responsible for converting glucose-
derived citrate into acetyl-CoA, which then affects his-
tone acetylation to regulate gene expression [116]. ACC1 
phosphorylation, which results in ACC1 inhibition, leads 
to accumulation of cytosolic acetyl-CoA. Accumulated 
acetyl-CoA causes total protein acetylation, including 
acetylation of the signal transducer Smad2; this enhances 
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Smad2 transcriptional activity and ultimately results in 
EMT and metastasis in breast cancer [58]. FAO-derived 
acetyl-CoA can acetylate mitochondrial proteins, but 
the function of this phenomenon remains unknown 
[117]. Moreover, acetylation of ACSS2 inhibits its activ-
ity; SIRT3 can reverse the acetylation and activate ACSS2 
[118]. Cancer cells preferentially utilize acetate as their 
carbon source, not only for FA synthesis, but also for epi-
genetic regulation via modulation of histone acetylation 
and associated gene expression. ACSS2 plays an impor-
tant role in converting acetate into acetyl-CoA. There-
fore, it is also involved in acetate-mediated epigenetic 
regulation [119]. For example, ACSS2 is phosphoryl-
ated at serine 659 by AMPK under metabolic stress and 
translocated to nucleus to locally produce acetyl-CoA 
for histone acetylation at the promoter regions of genes 
involved in autophagosome and lysosome formation 

[120]. That study provides strong evidence linking metab-
olism to epigenetic regulation of gene expression.

Another intriguing question is how are differentiated 
cancer cells reprogrammed into a stem-like or drug-tol-
erant state and what signals drive the process of repro-
gramming. Acetyl-CoA-mediated histone acetylation is 
controlled by glucose availability in embryonic stem (ES) 
cells and is responsible for maintaining the pluripotency 
of ES cells [121]. However, the gene expression profile 
associated with histone acetylation has not been revealed. 
Not only glucose, but also lipids, can be metabolized into 
acetyl-CoA, which then becomes a major carbon source 
for histone acetylation [122]. Moreover, the enhance-
ment of both FAO and FA accumulation in breast cancer 
cells is linked to the acquisition of stem-like properties 
[94], implying that maximally functioning FA catabolism 
and anabolism may continuously provide acetyl-CoA 

Fig. 2 Potential roles of fatty acid metabolism in regulating cancer cell plasticity. Cancer cells can be reprogrammed into a cancer stemness state or 
drug‑tolerant state with appropriate cues. It has been shown that adipocytes in the tumor microenvironment secrete leptin, transforming growth 
factor β (TGFβ) or other hormones and growth factors that support conversion of cancer cells into more malignant cell types, including cancer 
stem cells/tumor‑initiating cells or drug‑tolerant persisters. Acetyl‑CoA is a central hub for multiple metabolic pathways including FA synthesis and 
FAO. Therefore, acetyl‑CoA might be a major carbon source for histone acetylation and regulating gene expression for reprogramming. ACSS2 is 
phosphorylated and transferred to nucleus for histone acetylation. Some transcription factors, including hypoxia inducible factor‑1α (HIF‑1α), signal 
transducer and activator of transcription 3 (STAT3) and SMAD family member 2 (Smad2), are also involved in the conversion and may drive cancer 
cell plasticity
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for chromatin remodeling and reprogramming. Taken 
together, this suggests that lipid-derived acetyl-CoA is 
a major signaling metabolite that can reprogram cancer 
cells to acquire malignant phenotypes. Blockade of FAO 
with CPT inhibitors (e.g. ETO or perhexiline) or combi-
nation of FAO inhibitors with FASN inhibitors may hold 
hope for combating therapeutic resistance by eliminating 
CSCs/TICs/DTPs.

Lastly, both the lipogenic phenotype and cancer 
stemness can be induced by hypoxia [94, 123–126], 
suggesting that hypoxic signaling could be a converg-
ing pathway for both phenotypes. HIF-1α is the major 
regulator of hypoxic signaling, and a hypoxia- or pseu-
dohypoxia-induced lipogenic phenotype can be HIF-
1α-dependent [94, 126]. Moreover, HIF-1α induces 
expression of stemness factors, including Oct-4 and 
NANOG, and cancer cell plasticity observed in breast 
cancer is also dependent on HIF-1α [94, 125]. Therefore, 
HIF-1α may be an ideal target for shutting down both FA 
metabolism and stemness signaling in cancer cells, and 
ultimately preventing the conversion from cancer cells to 
CSCs/TICs/DTPs (Fig. 2).

Conclusions
FA metabolism has drawn increasing attention in recent 
years. Particularly, the association between FA synthesis 
and the resulting lipogenic phenotype with cancer pro-
gression has been well-documented. However, fewer 
studies have focused on the role of FAO in CSCs/TICs/
DTPs. Here, we have summarized evidences showing the 
relationship among FA metabolism, cancer stemness and 
therapeutic resistance and also discussed potential issues 
that may warrant further investigations. In the future, 
with more detailed mechanistic findings, therapeutic tar-
geting of FA metabolism may be used to eradicate CSCs/
TICs/DTPs and combat cancer more effectively.
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