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Abstract 

Background: Treatment guidelines for a variety of cancers have been increasingly used in clinical practice, and 
have resulted in major improvement in patient outcomes. However, recommended regimens (even first-line treat-
ments) are clearly not ideal for every patients. In the present study, we used mini patient-derived xenograft (mini-
PDX) and next-generation sequencing to develop personalized treatment in a patient with metastatic duodenal 
adenocarcinoma.

Methods: Resected metachronous metastatic tumor tissues were implanted into SCID mice to determine the 
sensitivity to a variety of drug regimens. Mutation profiles were assessed using both DNA whole-exome sequencing 
(DNA–WES) and RNA sequencing. The results of the analyses were used to select optimal treatment for the patient 
with metastatic duodenal adenocarcinoma.

Results: Assessment with mini-PDX models took only 7 days. The results showed high sensitivity to S-1 plus cis-
platin, gemcitabine plus cisplatin and everolimus alone. The patient received gemcitabine plus cisplatin initially, 
but the treatment was terminated due to toxicity. The patient was then switched to treatment with S-1 alone. The 
overall disease-free survival was 34 months. DNA–WES and RNA sequencing identified KRAS mutation (A146T), TP53 
(C229Yfs*10) and RICTOR amplification in the metastatic duodenal adenocarcinoma. These findings provided further 
support to the results of the mini-PDX, and suggest mTOR inhibitors should be used if and when relapse eventually 
occurs in this patient.

Conclusions: Mini-PDX model combined with WES/RNA sequencing can rapidly assess drug sensitivity in cancer 
patients and reveal key genetic alterations. Further research on this technology for personalized therapy in patients 
with refractory malignant tumors is warranted.
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Background
Duodenal adenocarcinoma is a rare tumor that 
accounts for less than 1% of all gastrointestinal can-
cers [1, 2]. Complete surgical resection is the optimal 
therapeutic modality for localized duodenal adenocar-
cinoma. Approximately 30–40% of the patients who 
have undergone curative resection of the primary duo-
denal adenocarcinoma eventually relapse [3]. In lymph 
node-positive patients, adjuvant chemotherapy could 
improve patient outcomes [4]. The addition of radio-
therapy to adjuvant therapy does not confer a survival 
benefit in high-risk patients [5]. Due to a lack of ran-
domized studies, optimal adjuvant chemotherapy 
remains a matter of debate.

In recent years, clinical oncology has greatly benefited 
from rapid progress in molecular testing, particularly 
next-generation sequencing (NGS). NGS provides higher 
analytical sensitivity and could simultaneously ana-
lyze numerous target genes and pathways in cancer [6]. 
Identification of driver mutations in tumors provides an 
opportunity to guide the selection of anticancer drugs 
and allows more precise targeted cancer therapy [7]. 
RNA sequencing quantifies the level of gene expression at 
the transcriptional level, and could detect sequence vari-
ants [8], and has been used as a new tool to prospectively 
test somatic mutations and germline variants. Integrating 
information obtained with DNA whole exome-sequenc-
ing (DNA–WES) and RNA sequencing could improve 
detection of cancer driver mutations [9].

Next-generation sequencing in combination with 
patient-derived xenograft (PDX) models (developed by 
LIDE Biotech) has been used to develop personalized 
treatment for melanoma [10]. PDXs allow preclinical 
evaluation of treatment effects [11], which, unlike cell 
line–derived tumor models, retain mutationally hetero-
geneous tumor cell populations similar to that in indi-
vidual patients [12]. PDX models may also effectively 
mimic the treatment response of the parental tumor 
and can provide clues for selecting therapeutic target 
and regimen [13, 14]. Major obstacles in using conven-
tional PDXs to develop personalized treatment plan for 
individual patients include low tumor engraftment rate 
and long period of time. PDX modeling is also expensive, 
technically cumbersome, and requires a large amount of 
tumor tissue [15]. Mini-PDX is a platform with reduced 
complexity and faster result turn-around. It is a prom-
ising tool where tumor cells from patients maintain 
tumorigenicity and are then inoculated into immuno-
compromised mice via a special capsule to establish 
tumor xenografts.

In the present study, we evaluated mini-PDX models 
combined with NGS (DNA–WES and RNA sequenc-
ing) analysis of metastatic tissue samples to guide 

personalized treatment in a patient with metastatic duo-
denal adenocarcinoma.

Methods
DNA–WES sequencing
DNA was extracted from fresh metastatic tumor tis-
sues using a QIAamp DNeasy blood and tissue kit (Qia-
gen, Valencia, CA, USA). Raw WES reads were aligned 
to the reference genome (hg19) using the BWA-MEM 
aligner and further re-mapped for error correction and 
re-calibration using the Assembly Based ReAligner 
(ABRA) [16]. Polymerase chain reaction (PCR) duplica-
tions were removed by Picard software. The quality con-
trol metrics included coverage distribution, sequencing 
error and insert size estimation. Somatic mutations and 
genomic amplification/deletion were then detected from 
BAM files. Somatic single nucleotide variants (SNVs) 
were identified by MuTect (v1.17) with peripheral blood. 
Insertion-deletion polymorphisms (INDELs) were iden-
tified using PINDEL (V0.2.4). Additional filtering steps 
were used to reduce background noise. The functional 
impact of passed mutations was annotated by SnpEff3.0. 
The copy number variation (CNV) regions were identi-
fied by Control-FREEC (v9.4) [17] with the following 
parameters: window = 50,000 and step = 10,000. Gene 
fusions were detected through an in-house pipeline.

RNA sequencing
Total RNA was isolated using the  RNeasy® Mini Kit (Qia-
gen), and the quality of RNA sequencing paired-end reads 
was assessed with FastQC. Reads were then mapped to 
the hg19 genome with the STAR RNA sequencing aligner 
[18]. Gene fusions at the transcript level were detected by 
STAR-fusion. Gene expression level was estimated with 
RSEM.

Mini‑PDX assay
Mini-PDX assay was carried out using the  OncoVee® 
Mini PDX kit (LIDE Biotech Co., Ltd, Shanghai, China) 
(Fig.  1). Briefly, metastatic tumor samples were har-
vested, and then washed with Hanks’ balanced salt solu-
tion (HBSS) to remove non-tumor tissue and necrotic 
tumor tissue in a biosafety cabinet. The tumor samples 
were minced, followed by incubation with collagenase at 
37 °C for 1–2 h. The cells were collected and blood cells 
and fibroblasts were then removed. The cell suspension 
was transferred to HBSS-washed capsules made of hol-
low fiber membrane with a pore size allowing passage of 
molecules less than 500 kDa. The fiber system delivered 
media to the cells in a manner similar to the delivery of 
blood through the capillary networks in vivo.

SCID mice (6–8  weeks of age) were housed and 
monitored in a SPF animal facility. For subcutaneous 
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implantation, a small skin incision was made and the 
special capsule was inserted through the subcutaneous 
tissue. One day after tumor cell inoculation, tumor-bear-
ing mice were randomized to receive vehicle, S-1 alone 
[10  mg/kg, orally administered (po), daily], oxaliplatin 
alone [5 mg/kg, intravenously (iv), every 4 days], irinote-
can alone (50 mg/kg, iv, every 4 days), capecitabine alone 
(400 mg/kg, po, daily), nab-paclitaxel alone (20 mg/kg, iv, 
every 4 days), everolimus alone (10 mg/kg, po, daily), cis-
platin (5 mg/kg, iv, every 4 days) in combination with S-1 
(10 mg/kg, po, daily) or gemcitabine (60 mg/kg, iv, every 
4  days). Seven days later, the capsules with tumor cells 
were removed. Cell viability was evaluated using a CTG 
assay.

Statistical analysis
Statistical analyses were performed using SPSS version 
16.0 (SPSS Inc., Chicago, IL, USA). One-way ANOVA 
followed by posthoc analysis was used for comparisons. 
P < 0.05 was considered statistically significant.

Results
Clinical history
A 57-year-old man underwent a pancreaticoduodenec-
tomy for duodenal adenocarcinoma in February 2014. 
The tumor penetrated the visceral peritoneum and 
invaded the pancreas with nodal involvement (pT4N1M0, 
stage IIIA, Fig.  2a). Starting from 1  month after the 

surgery, he received empirical treatment with 6 cycles of 
gemcitabine plus S-1 (GS) (gemcitabine 1000 mg/m2 on 
days 1 and 8, and oral S-1 60 mg twice daily on days 1–14, 
repeated every 3 weeks). A repeat CT scan in December 
2016 revealed a lesion 2.2 cm in diameter in the root of 
the superior mesenteric artery and below the transverse 
mesocolon (Fig.  3a). PET/CT scan showed enhanced 
FDG uptake (Fig.  3b). The metastatic lesion was surgi-
cally removed and pathologically confirmed as metastatic 
duodenal adenocarcinoma in December 2016 (Fig. 2b).

Based on the results of the mini-PDX assessment, the 
patient was given a chemotherapy regimen that con-
sisted of intravenous gemcitabine (1000 mg/m2) and cis-
platin (25 mg/m2) on day 1 and 8, given every 3 weeks. 
The treatment was terminated after 4 cycles due to drug-
related toxicities, including grade 3 nausea and fatigue. 
In May 2017, the patient was treated with 3 cycles of S-1 
treatment (60 mg, po, twice daily for 14 consecutive days 
every 3 weeks). After the second surgery, the patient had 
completed adjuvant chemotherapy in February 2017. The 
last follow-up (9  months later) showed did not reveal 
tumor burden. The treatments and responses are sum-
marized in Fig. 4.

Mini‑PDX assay
Mini-PDX assays showed that compared with the vehi-
cle control on day 0, cell viability was decreased by 12.0% 
with S-1 plus cisplatin, and by 0.8% with gemcitabine 

Fig. 1 General schema of mini-PDX models
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Fig. 2 Histopathologic examination of the primary and metastatic duodenal adenocarcinoma by hematoxylin–eosin staining. a, b Microscopic 
examination reveals a moderately differentiated adenocarcinoma penetrating the visceral peritoneum and invading the pancreas. c, d Microscopic 
examination shows adenocarcinoma in the soft tissue of the superior mesenteric artery. a, c: ×40; b, d: ×100

Fig. 3 Computed tomography (CT) and PET/CT images of the metastatic lesion from a patient with duodenal adenocarcinoma. a CT scan shows 
the metastatic lesion (arrow) in the root of superior mesenteric artery and below transverse mesocolon. b PET/CT demonstrates malignant disease 
with FDG uptake (arrow) in the retroperitoneum
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plus cisplatin. The anti-proliferation rate with oxaliplatin, 
S-1, and everolimus was 67.6%, 80.3%, and 90.7%, respec-
tively on day 7 (Fig. 5). Cell viability in the nab-paclitaxel, 
irinotecan and capecitabine group was not significantly 
different from the vehicle control (P > 0.05). No signifi-
cant differences in body weight were observed among 
different treatment groups.

DNA–WES and RNA sequencing analysis
DNA–WES and RNA sequencing were applied to a 
panel of 450 relevant cancer genes in metastatic duode-
nal adenocarcinoma tissues. Targeted gene sequencing 
was achieved in both tumor and normal samples with a 
mean coverage of 1728X and 431X, respectively. More 
than 85% of the reads were mapped to regions that the 
panel targeted or flanked in both tumor and normal sam-
ples. We identified the following somatic genetic changes 
in the metastatic tumor: KRAS mutation (A146T), APC 
(N1455Kfs*2), TP53 (C229Yfs*10), CXCR4 (V160I), 

TERT amplification, MCL1 amplification and RICTOR 
amplification. Furthermore, we detected the following 
pharmacogenomic biomarkers: cisplatin (GSTP1 rs1695 
A/A), fluorouracil (TPMT rs1142345 A/A), and irinote-
can (UGT1A1 rs8175347 6/6; SLCO1B1 rs2306283 G/A).

To confirm these mutations, we performed paired-end 
RNA sequencing of the metastatic sample to a depth of 
52 million reads. Ninety-five percent of the reads (49 M) 
were aligned to the human genome (Additional file  1: 
Tables S1, S2). Of the aligned reads, 22.82% (12 M) were 
protein coding (Additional file  1: Figures  S1, S2). Con-
sistent with the results of WES, we identified the fol-
lowing somatic mutations in the transcriptomes of the 
metastatic tumor tissue: KRAS mutation (A146T), TP53 
(C229Yfs*10) and RICTOR amplification.

Discussion
Currently, little data is available to guide rational choice 
of chemotherapeutic regimen for duodenal adeno-
carcinoma. The current practice at many centers is to 
treat duodenal adenocarcinoma patients with oxalipl-
atin-based chemotherapy similar to that for colorec-
tal adenocarcinoma [2]. Gemcitabine-based adjuvant 
chemotherapy was offered to eligible patients with peri-
ampullary duodenal adenocarcinoma in the ESPAC-3 
trial [19]. In  vivo  models closely mimicking the biology 
of duodenal adenocarcinoma in patients are urgently 
needed to reliably determine optimal drug sensitivities of 
individual cancers for personalized therapy. PDX mod-
els of certain cancers closely mirror the drug response 
in patients compared with other models [20]. However, 
PDX models have several drawbacks that limit their clini-
cal application. Generation of PDXs is only modestly suc-
cessful and requires a large amount of tumor tissue which 
can usually only be obtained from surgically resected 
tumors. Furthermore, PDX models require 4–8  months 
to identify active therapies for a particular cancer patient. 
Elapse of time between tumor engraftment in mice and 
initiating treatment for patients is a limiting factor for 

Fig. 4 Flowchart summarizing treatments provided to the patient

Fig. 5 Mini PDX responses to chemotherapeutic and targeted 
regimens. Growth of mini-PDX from the patient in mice treated 
with vehicle, irinotecan, oxaliplatin, nab-paclitaxel, capecitabine, 
everolimus, S-1, gemcitabine plus cisplatin and S-1 plus cisplatin. One 
day after tumor cell inoculation, drug treatments commenced. Data 
show relative tumor cell proliferative rates versus the day 7 vehicle 
group
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real-time personalized medicine applications [12, 21]. To 
overcome these limitations, a new technology known as 
the mini-PDX model has emerged to guide selection of 
chemotherapeutic drugs. Mini-PDX models only require 
a small number of tumor cells and allow rapid analysis 
of drug sensitivity with a median latency of 7 days; thus, 
duodenal adenocarcinoma patients can receive person-
alized  chemotherapy in a clinically relevant time frame. 
Previous studies have demonstrated a potentially strong 
agreement between mini-PDX- and PDXs-based predic-
tion of drug sensitivity (overall response agreement: 89%) 
in a variety of solid tumors including lung cancer, pancre-
atic cancer, and gastric cancer. Importantly, the drug sen-
sitivity pattern of mini-PDX can recapitulate responses in 
patients from which they were derived.

The median disease-free survival of duodenal adeno-
carcinoma patients with lymph node metastasis who 
underwent radical resection is 18–25 months [22, 23]. If 
recurrence develops, the survival time is only 5.4 months 
[22]. However, the disease-free survival of our patient 
who received GS as an adjuvant chemotherapeutic regi-
men was 34 months. Sensitivity of the cancer tissues to 
gemcitabine and S-1 in the mini-PDX experiments seems 
to be consistent with clinical response to the GS regimen 
in this patient. Following a second resection, the patient 
received gemcitabine and S-1-based chemotherapy 
according to the mini-PDX results. Therefore, mini-PDX 
is suitable for selecting optimal regimens for personal-
ized therapy clinically.  However, further studies with  a 
large patient cohort are required.

DNA–WES and RNA sequencing identified 
patients with KRAS mutation and RICTOR-amplified 
tumors. KRAS mutation correlates significantly with late 
stage and poor tumor differentiation in duodenal adeno-
carcinoma and KRAS-mutated persons are more likely 
to experience distant relapse [24]. To date, there are no 
effective anti-Ras strategies. Activated KRAS induces a 
complex signaling network, including the PI3K/AKT/
mTOR pathway. Due to difficulty in targeting KRAS 
directly, targeting downstream RAS effector signaling 
pathways are currently under clinical evaluation [25, 
26]. RICTOR plays an important role in the PI3K/AKT/
mTOR signaling pathway, which is one of the most com-
monly activated pathways in human cancer [27]. RIC-
TOR is an essential component of the mTORC2 complex 
and upregulation of mTORC2 activity in turn regulates 
cell growth, metabolism, and survival [28]. It is also an 
important component of feedback loops and cross-talk in 
PI3K–AKT–mTOR signaling. RICTOR amplification is a 
rare, but recurrent somatic alteration in solid tumors [29]. 
Targeting mTOR to inhibit RICTOR may be a potential 
therapeutic strategy [30]. In the mini-PDX model, RIC-
TOR amplified duodenal adenocarcinoma demonstrated 

sensitivity to mTORC1 inhibitor everolimus. However, 
inhibition of mTORC1 leads to an increase in AKT phos-
phorylation due to feedback loops that allow continued 
activity of mTORC2 [31]. The dual mTORC1/2 inhibi-
tor, AZD2014, showed a more potent inhibitory effect on 
RICTOR-amplified tumors than everolimus [29].

Pro-survival protein myeloid cell leukemia 1 (MCL1) 
amplification was identified by DNA sequencing in this 
patient. MCL1, one of the anti-apoptotic BCL-2 family 
members, is overexpressed in many human cancers [32], 
and in several key oncogenic pathways to sustain cancer 
cell survival and resist cancer treatment. Repression of 
MCL1 exerts cytotoxic effects in tumor cells [33], indi-
cating that MCL1 is a promising target for the treatment 
of a wide range of tumors. S63845, a small molecule that 
specifically binds with high affinity to the BH3-binding 
groove of MCL1, exerts anti-tumor activity in MCL1-
dependent cancer cells in  vitro and in  vivo, while spar-
ing normal tissues at efficacious doses, which represents 
a potential breakthrough in cancer therapy [34].

Conclusions
Mini-PDX models in combination with DNA–WES/RNA 
analysis as an effective platform could be used to opti-
mize the clinical management of metastatic duodenal 
adenocarcinoma.

Additional file

Additional file 1: Table S1. Quality control metrics of targeted sequenc-
ing data. Table S2. Quality control metrics of RNA-seq data. Figure S1. 
Average coverage (Log10 transformed) of targeted genes with data 
deduplication. Coverage of mutant genes were shown in grey bar, error 
bars indicted standard deviation of sequencing depths for each gene. 
Coverage of all genes sequenced were shown in red line. Figure S2. Frac-
tion of reads that mapped to coding, intergenic, ribosomal, intronic, UTR 
and unmapped reads for metastasis RNA-seq.
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