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Protein-coding genes combined 
with long noncoding RNA as a novel 
transcriptome molecular staging model 
to predict the survival of patients 
with esophageal squamous cell carcinoma
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Abstract 

Background: Esophageal squamous cell carcinoma (ESCC) is the predominant subtype of esophageal carcinoma in 
China. This study was to develop a staging model to predict outcomes of patients with ESCC.

Methods: Using Cox regression analysis, principal component analysis (PCA), partitioning clustering, Kaplan–Meier 
analysis, receiver operating characteristic (ROC) curve analysis, and classification and regression tree (CART) analysis, 
we mined the Gene Expression Omnibus database to determine the expression profiles of genes in 179 patients with 
ESCC from GSE63624 and GSE63622 dataset.

Results: Univariate cox regression analysis of the GSE63624 dataset revealed that 2404 protein‑coding genes (PCGs) 
and 635 long non‑coding RNAs (lncRNAs) were associated with the survival of patients with ESCC. PCA categorized 
these PCGs and lncRNAs into three principal components (PCs), which were used to cluster the patients into three 
groups. ROC analysis demonstrated that the predictive ability of PCG‑lncRNA PCs when applied to new patients was 
better than that of the tumor‑node‑metastasis staging (area under ROC curve [AUC]: 0.69 vs. 0.65, P < 0.05). Accord‑
ingly, we constructed a molecular disaggregated model comprising one lncRNA and two PCGs, which we desig‑
nated as the LSB staging model using CART analysis in the GSE63624 dataset. This LSB staging model classified the 
GSE63622 dataset of patients into three different groups, and its effectiveness was validated by analysis of another 
cohort of 105 patients.

Conclusions: The LSB staging model has clinical significance for the prognosis prediction of patients with ESCC and 
may serve as a three‑gene staging microarray.

Keywords: Long non‑coding RNA, Protein‑coding gene, Esophageal squamous cell carcinoma, Overall survival, 
Staging model, Transcriptome

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Open Access

Cancer Communications 

*Correspondence:  nmli@stu.edu.cn; biozy@ict.ac.cn; lyxu@stu.edu.cn 
2 Department of Biochemistry and Molecular Biology, Shantou University 
Medical College, Shantou, Guangdong 515041, P. R. China
4 Institute of Oncologic Pathology, Shantou University Medical College, 
Shantou, Guangdong 515041, P. R. China
5 Key Laboratory of Intelligent Information Processing, Advanced 
Computer Research Center, State Key Laboratory of Computer 
Architecture, Institute of Computing Technology, Chinese Academy 
of Sciences, Beijing 100190, P. R. China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-5616-6910
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40880-018-0277-0&domain=pdf


Page 2 of 13Guo et al. Cancer Commun  (2018) 38:4 

Introduction
Esophageal cancer ranks as the world’s sixth deadliest 
cancer and has two major histological types: adenocar-
cinoma and squamous cell carcinoma [1, 2]. In China, 
esophageal squamous cell carcinoma (ESCC) is the pre-
dominant subtype, with high incidence and poor prog-
nosis [3]. The tumor-node-metastasis (TNM) staging 
system, which was proposed by the American Joint Com-
mittee on Cancer (AJCC) and the Union for International 
Cancer Control (UICC) in 1988 and revised in 2009, is 
the most important tool for determining appropriate 
treatment and predicting survival [4]. However, patients 
with ESCC at the same TNM stage may have a com-
pletely different prognosis. This is explained by the vari-
ability and heterogeneity of tumor cells [5]. Moreover, 
criteria used in the TNM system have varied constantly 
according to the different editions of the AJCC/UICC 
guidelines [6, 7], and the complexity of the TNM system 
makes it burdensome for clinicians to predict prognosis 
[8–10]. Therefore, a novel tumor staging or survival pre-
dicting model is urgently needed for patients with ESCC.

With the development of high-throughput sequenc-
ing technology, such as microarray analysis [11, 12], the 
number of gene expression profiles has rapidly increased, 
which provides researchers with numerous opportuni-
ties and challenges to deeply mine databanks such as 
the Gene Expression Omnibus (GEO) and the Cancer 
Genome Atlas (TCGA) thereby gaining insights into 
tumor staging or survival predicting models. Since Golub 
et al. [13] used DNA microarray technology to generate 
gene expression profiling data to classify acute myeloid 
leukemia (AML) and acute lymphocytic leukemia (ALL), 
numerous cancer molecular classification studies based 
on gene expression profiles or clinical experiments have 
been proposed for classifying cancer types or subtypes 
[14–17]. For example, The PAM50 prognostic models 
based on the expression of 50 genes can be applied to 
large series of formalin-fixed, paraffin-embedded breast 
cancer samples, providing more prognostic information 
than can be acquired from knowledge of clinical factors 
and immunohistochemical analysis of tumor tissues [18]. 
For example, analysis of the expression of the protein-
coding genes (PCGs) ubiquitin-conjugating enzyme E2 C 
(UBE2C) and matrix gla protein (MGP) combined with 
two clinicopathological variables accurately predicts 
postoperative outcomes of patients with ESCC [19].

A new molecular staging using the G-factor, which is 
based on the expression of p53 and matrix metallopro-
teinase-7 (MMP-7), can supplement applying the TNM 
system to classify gastric cancer [20], and a prognos-
tic 7-gene expression signature for stage III disease was 
observed in colorectal cancer [21]. Our institute has 
identified several prognostic molecular parameters for 

ESCC as well [22–29]. In particular, we have proposed a 
FENSAM (Fascin, Ezrin, N stage, surgery extent, activat-
ing transcription factor 3 [ATF3], M stage) model, which 
provides an alternative, precise classification for ESCC 
[16].

Similar to PCGs, certain dysregulated long non-coding 
RNAs (lncRNAs) act as oncogenes [30]. For example, 
HOX antisense intergenic RNA (HOTAIR) is associated 
with breast cancer metastasis [31]. Growth arrest specific 
5 (GAS5) and LINC00538 (Yiya) are promising prognos-
tic biomarkers for liver metastases in patients with early-
stage colorectal cancer [32]. An 8-lncRNA expression 
signature was identified in esophageal cancer, which may 
provide more significant prognostic information beyond 
conventional clinicopathological factors [33].

Here we used two microarray datasets and relevant 
clinical information from the GEO dataset to explore the 
association between PCGs and lncRNAs and the survival 
of patients with ESCC. For this purpose, we constructed 
a PCG-lncRNA transcriptome staging model to predict 
the prognosis of patients with ESCC.

Materials and methods
GEO data
PCG and lncRNA expression data and clinical data of 
corresponding patients with ESCC were obtained from 
the publicly available GEO database (https://www.ncbi.
nlm.nih.gov/geo/). We excluded cases without clini-
cal survival information. Two ESCC microarray data-
sets (GSE53624 and GSE53622) generated using the 
Agilent-038314 CBC Homo sapiens lncRNA + mRNA 
microarray V2.0 (http://www.genomics.agilent.com/) 
were selected. We divide GSE53624 into the training and 
test dataset randomly. The GSE53624 test dataset and 
GSE53622 was used for internal validation. The main 
clinicopathological characteristics of patients are sum-
marized in Table 1.

Probe re‑annotation pipeline
The GPL18109 probe set sequences for the Agi-
lent-038314 CBC Homo sapiens lncRNA + mRNA micro-
array V2.0 were downloaded from the Agilent website 
(https://www.agilent.com/). PCG and lncRNA expres-
sion data from the Agilent-based expression profile of 
ESCC cohorts (GSE53624 and GSE53622) was obtained 
by re-annotating microarray probes according to the 
sequences of the probe sets and the annotations of PCG 
and lncRNA records in GENCODE (GRCh38, release 
21, http://www.gencodegenes.org/). We used BLASTn 
(ftp://ftp.ncbi.nlm.nih.gov/blast/executables/LATEST/) 
to align the probe sequences to those of noncoding and 
coding transcript sequences from GENCODE.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.genomics.agilent.com/
https://www.agilent.com/
http://www.gencodegenes.org/


Page 3 of 13Guo et al. Cancer Commun  (2018) 38:4 

The alignments were filtered as follows: (i) only probes 
perfectly matched to a transcript were retained, result-
ing in two sets of probes targeting protein-coding and 
-non-coding transcripts, respectively; (ii) probes target-
ing noncoding transcripts that perfectly matched cDNA 
coding sequences were removed; (iii) all transcripts cor-
responding to the retained probes were mapped to the 
genome and annotated as PGCs or lncRNAs.

Sample collection and preparation
Besides above 179 ESCC patients from GEO database, we 
collected 105 ESCC patients as the experimental set from 
the Chaoshan District of Guangdong Province, which has 
a high prevalence of ESCC [26]. The experimental set was 
used for external validation. Samples were collected from 
the Department of Oncological Surgery of the Central 
Hospital of Shantou City, P.R. China between February 

Table 1 Clinicopathological characteristics of patients with esophageal squamous cell carcinoma

OS overall survival
a Comprising the GSE52634 and GSE53622 datasets
b Log-rank test was used

Variable The GEO  datasetsa The experimental set

Number of patients 5‑year OS rate (%) P  valueb Number of patients 5‑year OS rate (%) P  valueb

Total 119 105

Age (years)

 ≤ 59 89 48.31 0.03 63 58.73 0.69

 > 59 90 33.33 42 54.76

Sex

 Female 33 33.33 0.30 25 48.00 0.16

 Male 146 42.47 80 60.00

Tumor location

 Upper thorax 20 25.00 0.10 7 71.4 0.15

 Middle thorax 97 40.21 54 61.11

 Lower thorax 62 46.78 44 50.00

Histological grade

 G1 49 28.57 0.02 15 60.00 0.16

 G2 98 44.90 73 64.29

 G3 32 46.88 17 47.06

Primary tumor

 T1 12 41.67 0.04 21 71.42 0.03

 T2 27 40.74 63 63.49

 T3 110 44.55 21 31.58

 T4 30 26.67

Regional lymph nodes

 N0 83 56.62 < 0.01 50 68.00 < 0.01

 N1 62 27.41 32 56.25

 N2 22 27.27 16 37.50

 N3 12 25.00 7 28.50

pTNM stage

 I 10 70.00 0.00 6 33.30 0.00

 II 77 53.25 48 70.80

 III 92 27.17 51 47.05

Adjuvant therapy

 Unknown 45 64.44 0

 No 30 30.00 0.50 43 58.14 0.70

 Yes 104 33.65 62 56.45

 Radiotherapy Unknown 18 48.83 0.11

 Chemotherapy Unknown 19 59.09

 Radiotherapy + chemotherapy Unknown 25 48.00
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2012 and December 2013. Tumor and paired nontumor 
tissues were collected from patients who underwent 
surgical resection. After examination by a pathologist, 
tissues were immediately frozen in liquid nitrogen and 
stored at − 80  °C. Partial tissue samples were used for 
hematoxylin and eosin staining to confirm the diagnosis 
and analysis of pathological grade, metastasis, and tumor 
cell content. Tumor samples contained > 80% tumor tis-
sue free of necrosis were selected. Only those died of 
ESCC were included in the study. The follow-up for 
patients after esophageal resection continued until death, 
and it extended to March 2016. We excluded patients suf-
fering from severe postoperative complications, other 
tumors, or those who died of other causes. The clini-
cal data were available in Table  1. Cases were classified 
according to the TNM classification of the International 
Union Against Cancer, 7th edition. Evaluation of tumor 
differentiation was based on the guidelines of the World 
Health Organization (WHO) Pathological Classifica-
tion of Tumors. Overall survival (OS) was defined as 
the interval between surgery and death from tumors or 
the last observation of surviving patients. The study was 
approved by the Ethics Committees of the Central Hospi-
tal of Shantou City and Shantou University Medical Col-
lege. Written informed consent to use resected samples 
for research purposes was obtained from all patients.

Reverse transcription (RT) and real‑time PCR
Total RNA was extracted using TRIzol (15596-018, Life 
Technologies, Grand Island, NY, USA) and purified using 
a PureLink RNA Mini Kit (12183018A; Life Technolo-
gies) according to the manufacturer’s protocol. The purity 
and concentration of RNA were determined according 
to the ratio of absorbance of 260 nm/280 nm light using 
a NanoDrop ND-2000 spectrophotometer (ND-2000, 
Thermo Fisher Scientific, Waltham, MA, USA). The 
cDNA synthesis was performed by reverse transcription 
using random hexamer primers (Takara, Dalian, Liaon-
ing, China). Real-time PCR was performed using a SYBR 
Premix Ex Taq kit (DRR037A, DRR081A; Takara). Briefly, 
reverse transcription was performed at 37 °C for 15 min 
and at 85 °C for 5 s. Real-time PCR was performed using 
an ABI 7500 real-time PCR system (Life Technologies) as 
follows: 95 °C, 30 s; 95 °C, 5 s; 60 °C, 34 s (30 cycles). Rel-
ative quantification of mRNA expression was calculated 
using the  2−ΔΔCt method. Quantitative RT-PCR (qRT-
PCR) was performed in triplicate and repeated at least 
three times, as described previously [34, 35]. All methods 
were performed in accordance with guidelines and regu-
lations of the ethics committees identified above.

Statistical analysis
All analyses were performed using the R program 
(www.r-project.org), including packages named pROC, 
rpart, and survival downloaded from Bio-conductor 
(http://www.bioconductor.org/). Univariate Cox regres-
sion analyses were used to identify common PCGs and 
lncRNAs that associated with OS. P < 0.05 indicates a 
statistically significant difference. All insignificant PCGs 
and lncRNAs with P >0.05 were excluded. We per-
formed principal component analysis (PCA) [36–38] 
to reduce expression data and to capture innate patient 
characteristics.

We used the R NbClust package (Euclidean distance, 
complete linkage), and it provides 30 indices for deter-
mining the number of clusters. The output of the soft-
ware proposes the best clustering scheme from the 
results obtained by varying combinations of the clusters, 
distance measures, and clustering methods. These opera-
tions identify the optimal number of clusters by calculat-
ing several cluster indices. The clusters were validated 
using the Calinski and Harabasz index [39, 40].

Kaplan–Meier survival analysis was performed to test 
the equality of survival distributions of different groups 
for each ESCC cohort, and statistical significance was 
assessed using the two-sided log-rank test. Further, 
time-dependent receiver operating characteristic (ROC) 
curves were used to compare the sensitivity and speci-
ficity of the survival prediction, and the area under the 
curve (AUC) value was calculated from the ROC curve. 
Multiclass ROC curves were used to evaluate the effec-
tiveness of multi classification predictions, which were 
calculated using the R packages called pROC [41, 42]. 
Classification and regression tree (CART) analysis was 
performed using a Recursive Partitioning and Regres-
sion Trees (RPART) library in R to develop a risk-staging 
model and to determine predictors of survival from the 
set of survival-related PCGs and lncRNAs [43, 44]. This 
is a nonparametric statistical method that uses a series of 
dichotomous splits to create a decision tree.

To begin the CART analysis, patients identified from 
the GSE53624 dataset were randomly split into the train-
ing and testing groups using the function “sample” of the 
R program [45]. CART was applied first to the training 
group and then to the test sample to assess the model’s 
generalizability and to evaluate the overfitting of the 
model. When the classification tree was generated, error 
tests and pruning were performed to construct the final 
tree of parameters with the best size, lowest misclassifi-
cation rate, and lowest complexity. The selection process 
of the prognostic model is shown in Fig. 1.

http://www.r-project.org
http://www.bioconductor.org/
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The associations between coexpressed lncRNA and 
PGCs in the molecular staging model were computed 
using Pearson correlation coefficients visualized with 
Cytoscape. We next performed Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses of the coexpressed protein-cod-
ing genes to predict biological functions using the 
ClueGo plugin of Cytoscape (version 3.2.3) [46], which 

is a commonly used functional annotation tool that 
can assess over-representation of functional categories 
among a gene set of interest. Enrichment analysis, which 
was performed using the functional annotation chart and 
functional annotation clustering options, was limited to 
GO terms and KEGG pathways in the “Biological Pro-
cess” categories. Functional annotations with P < 0.05 
were considered significant [47].

Noncoding transcripts from 
Gencode database

Coding transcripts from 
Gencode database

BLAST BLAST
Gencode Probes 

re-annotation

Expression Data (GSE53624, n = 119; GSE53622, n = 60)

Expression profiles of 17434 PCGs and 6253 lncRNAs

GSE53624 Univariate Cox regression analysis  (P < 0.05)

2404 PCGs and 635 lncRNAs 

Principal component analysis and Clustering

Group the patient in three clusters

Divide GSE53624  into
the training and test dataset randomly 

Classification and regression tree (CART) 

One lncRNA and two PCGs remained to 
construct predictive stage model

Validation in two independent data 
(GSE53622 n = 60; experimental set, n = 105) 

Agilent human lncRNA+mRNA 
array V.2.0 platform 

Fig. 1 Schedule of the analyses used to develop the transcriptome molecular staging model and validate its predictive efficiency. PCG protein‑
coding gene, lncRNA long non‑coding RNA
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Results
Selection of ESCC microarray datasets and acquisition 
of PCG and lncRNA expression values
According to the dataset screening criteria described in 
Methods, 179 samples (119 from the GSE53624 data-
set and 60 from the GSE53622 dataset) were selected. 
All these ESCC samples contained tumor tissues and 
adjacent normal tissues. Probe reannotation of the Agi-
lent-038314 CBC Homo sapiens lncRNA + mRNA micro-
array V2.0 identified 17,434 PCGs and 6253 lncRNAs. 
We retained probes that were uniquely mapped to the 
genomic coordinates of PCGs or lncRNAs derived from 
GENCODE. Multiple probes (or probe sets) mapping 
to the same PCGs or lncRNAs were integrated using 
the arithmetic mean of the values of multiple probes 
(or probe sets) and were used to generate new PCG and 
lncRNA expression profile values from the GSE53624 and 
GSE53622 datasets. Further, we used fold-change values 
(cancer/normal) on a log2 scale in the next analysis.

Selection of prognostic PCGs and lncRNAs from the 
GSE53624 dataset
The ESCC patient cohort from GSE53624 (n = 119) was 
selected to explore the association of OS with PCGs or 
lncRNAs. We conducted univariate Cox proportional 
hazards regression analysis of the PCG and lncRNA 
expression profiling data, with OS as the dependent vari-
able, and identified 2404 PCGs and 635 lncRNAs that 
significantly associated with OS (P < 0.05) (Fig. 2a), which 
were therefore considered potential prognostic markers.

Identification of three distinct clusters of patients 
with ESCC
To identify genes that are more important for staging 
and to reduce the dimensionality of the profile with2404 
PCGs and 635 lncRNAs, PCA was performed. This anal-
ysis demonstrated that the survival-related PCG-lncRNA 
set in GSE63624 was reduced to three independent prin-
cipal components PC1, PC2, and PC3, accounting for 
99% of the variance of the component space (Fig.  2b). 
Using the three PC scores as variables, we applied the 
NbClust clustering procedure to cluster the patients with 
ESCC identified from the GSE53624 dataset and high-
lighted a three-cluster partition as the best, with the larg-
est cluster index number (Fig. 2c, d).

Association of patient groups with survival
Kaplan–Meier analysis revealed that the prognostic 
PCGs and lncRNAs had the potential to classify the 119 
patients into three groups with different OS estimates. 
Patients in the high-risk group had shorter OS compared 
with those in the middle- and low-risk groups (median 
OS: 16.5  months vs. 26.5  months and 50.9  months, 

P < 0.05) (Fig. 3a). The 5-year OS rate was approximately 
20% in the high-risk group, approximately 30% in the 
middle-risk group, and > 50% in the low-risk group.

Comparison of the PCG‑lncRNA grouping versus TNM 
staging in survival prediction
According to Kaplan–Meier analysis, the PCG-lncRNA 
grouping yielded a better classification of patients com-
pared with that of the TNM staging system (Fig. 3b). To 
compare the sensitivity and specificity in survival predic-
tion between TNM staging and PCG-lncRNA grouping, 
we performed ROC analysis. In the GSE53624 dataset, 
the predictive ability of the PCG-lncRNA grouping was 
better than that of TNM staging (AUC: 0.69 vs. 0.65, 
P < 0.05) (Fig. 3c).

Construction of the LINC01800‑SEMA3A‑BEX2 (LSB) 
staging model
Kaplan–Meier and ROC analyses showed that the PCG-
lncRNA grouping improved the classification of patients, 
indicating its value as a novel, efficient staging plan. We 
next pursued identifying markers to classify the three 
groups as follows. We randomly divided the GSE53624 
dataset into a training set (n = 59) and a testing set 
(n = 60) for internal validation. Next, we selected the first 
100 genes with the highest absolute loading, e.g., the 100 
genes with the highest positive or negative correlation 
corresponding to each principal component. The clinical 
attributes of patients, such as age, sex, tobacco use, alco-
hol use, tumor location, tumor grade, T stage, N stage, 
and TNM stage, were used as variables to perform the 
CART routines.

Subsequently, CART analysis of the training set gener-
ated the final tree composed by LINC01800, semaphorin 
3A (SEMA3A), and brain-expressed X-linked 2 (BEX2) 
identified from the survival-related PCGs and lncRNAs. 
Moreover, there were no clinical attributes of patients 
with lowest error rate remaining in the classification 
tree produced using RPART (Fig. 4a, b; Table 2). Higher 
expression levels of BEX2 and LINC01800 were associ-
ated with longer OS (univariable Cox regression coef-
ficient < 0). Higher expression levels of SEMA3A were 
associated with shorter OS (univariable Cox regression 
coefficient > 0). Multiclass ROC was used to evaluate the 
predictive ability of the LSB (stands for the first letter of 
each of the three genes) staging model, and the AUC was 
0.89 (P < 0.05) in the training set.

The LSB staging model was used to stratify patients 
in the test set (n = 60) and entire GSE53624 data-
set (n = 119), and the AUC values were 0.79 and 0.83 
(P < 0.05), indicating that this model efficiently stratified 
patients into different prognostic groups (Fig. 4c).
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To validate its power for staging efficiency, the LSB 
staging model was evaluated using an independent data-
set (GSE53622, n = 60). Kaplan–Meier survival curves for 
patients with LSB I, II, and III ESCC, which were classi-
fied according to the respective cutoff values of the three 
molecular markers, are shown in Fig. 5a (median OS: 56.7 
vs. 39.2 vs. 24.5  months, P = 0.01). The 5-year OS rates 
were of was 63.4% in patients with LSB I ESCC, 39.6% in 
patients with LSB II ESCC, and 21.2% in patients with 
LSB III ESCC. The percentages of patients with LSB I, 
LSB II, and LSB III ESCC were 33.3%, 38.3% and 28.4%, 
respectively, similar to those in the training group (LSBs 
I-III: 32.0%, 34.0%, and 34.0%, respectively). Moreover, 

the AUC of the LSB staging model was 0.68, greater than 
0.66 for the TNM staging (P < 0.05) (Fig. 5b).

Validation of the LSB staging model using an experimental 
dataset
To confirm the findings described above, RNA was 
extracted from 105 pairs of tissues from patients with 
ESCC, reversely transcribed, and quantified using real-
time RT-PCR. The primer sequences for SEMA3A, 
BEX2, and LINC01800 cDNAs for real-time RT-PCR 
are shown in Table 3. Beta-actin mRNA was used as the 
internal control. Integrating the qRT-PCR results and 
clinical data with the LSB staging model, the 105 patients 
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Table 2 Identified PCGs and lncRNAs and their associations with prognosis

PCG Protein-coding gene, lncRNA long non-coding RNA
a Derived from univariable Cox regression analysis of the GSE53624 dataset

Ensemble ID Gene symbol Gene name Chromosome location Coefficienta P  valuea Gene expression level 
association with prognosis

ENSG00000075213 SEMA3A Semaphorin 3A Chromosome 7: 83955777–
84492724 (−)

0.17 0.01 High

ENSG00000133134 BEX2 Brain‑expressed 
X‑linked protein 2

Chromosome X: 103309346–
103311046 (−)

− 0.22 0.01 Low

ENSG00000234572 LINC01800 Chromosome 2: 64846130–
64863626 (−)

− 0.20 0.00 Low
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were classified into LSB I, II, and III groups, with dif-
ferent OS (median OS: 31.1 months vs. 42.0 months vs. 
53.4  months, P < 0.05) (Fig.  5c). The predictive ability of 

the LSB staging method was better than that of the TNM 
staging (AUC: 0.62 vs. 0.58) (Fig. 5d).

Functional classifications of the LSB genes
To further investigate the potential biological roles of 
the three markers, a coexpression network compris-
ing SEMA3A, BEX2, and LINC01800 was constructed 
by computing Pearson correlation coefficients of the 
GSE53624 and GSE53622 datasets (Fig.  6a). GO and 
KEGG analysis of the PCGs which were coexpressed 
with LINC01800, SEMA3A, and BEX2 revealed that 
in the two datasets, the coexpressed PCGs were sig-
nificantly enriched in 28 GO terms and 3 KEGG path-
ways (P < 0.05). These findings suggest that SEMA3A, 
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Table 3 Primer sequences used for real-time RT-PCR

RT-PCR Reverse transcription polymerase chain reaction

Gene Forward (5′–3′) Reverse (5′–3′)

SEMA3A TGGTTCTGCATGTTCTCGCT CTCTCTGCGACTTCGGACTG

BEX2 TCGAGAATCGGGAGGAGG 
AGAC

TCCTGGTTGACATTTTCCA 
CGAT

LINC01800 CCACACTGGAGTGCAGCTAT CCACCTGTCTGATGGTCTTCT

Β‑actin AGCGAGCATCCCCCAAAGTT GGGCACGAAGGCTCATCATT
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Fig. 6 Coexpression network analysis and prediction of the function of SEMA3A, BEX2, and LINC01800. a Coexpression network of SEMA3A, BEX2, 
and LINC01800 with other genes in the GSE53624 and GSE53622 datasets (Pearson correlation coefficient > 0.5, P < 0.05). Blue or red genes were 
coexpressed with two or one of the three identified genes in the LSB staging model, respectively. b Functional enrichment of the protein‑coding 
genes which were coexpressed with SEMA3A, BEX2, and LINC01800, using ClueGo
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BEX2, and LINC01800 may be involved in tumorigen-
esis through interacting with those coexpressed PCGs 
that influence biological processes such as angiogen-
esis, cell migration, cell differentiation, and cell adhesion 
(Fig. 6b).

Discussion
Using advances in microarray technology, algorithms, 
and data accumulated for ESCC, we constructed the 
LSB staging model comprising SEMA3A, BEX2, and 
LINC01800. We employed an unsupervised learning 
algorithm called PCA and CART based on reannotating 
the Agilent-038314 CBC Homo sapiens lncRNA + mRNA 
microarray V2.0 [47, 48]. The LSB staging model was 
simpler to use with higher prediction accuracy compared 
with the ESCC staging model comprising ubiquitin-
conjugating enzyme E2 C (UBE2C) and matrix gla pro-
tein (MGP) gene expression levels [19] and TNM staging 
or the FENSAM (Fascin, Ezrin, N stage, surgery extent, 
activating transcription factor 3 [ATF3], M stage)staging 
model constructed in our previous study [16]. Briefly, the 
LSB staging model performed better than the TNM stag-
ing system and other staging models of ESCC, according 
to our data re-mining. With the rapid increase of related 
studies, more transcriptome staging models will become 
available, such as combining PCGs and lncRNAs with 
microRNAs or circular RNAs or both.

CART analysis is a powerful statistical method with 
significant clinical utility. The tree-building technique 
can be used to construct predictive models by testing the 
influence of variables on the “outcome.” Compared with 
standard methods such as multivariate regression, CART 
analysis is highly advantageous, because it analyzes 
highly skewed data, with simplicity and clarity. Therefore, 
we performed CART analysis for model development to 
generate a classification tree. In this tree, the complexity 
parameter reflects the tradeoff between tree complexity 
and how well the tree fits the data. After error testing and 
pruning, the final tree comprising LINC01800, SEMA3A, 
and BEX2 achieved the best size, lowest misclassification 
rate, and smallest complexity parameter. We validated 
the effectiveness of the LSB staging model using the 
GSE53622 dataset and a cohort of 105 patients’ tissues 
from our laboratory.

Interestingly, any two nodes in the LSB staging model 
had conjunct coexpressing genes, but no intersection of 
the three. LINC01800, SEMA3A, and BEX2 and their 
coexpressed genes contribute to angiogenesis, cell migra-
tion, cell differentiation, and cell adhesion, which was 
revealed through analysis of GSE53624 and GSE53622 
datasets. BEX2 is overexpressed in a subset of primary 
breast cancers and mediates the inhibition of apoptosis 
of breast cancer cell lines through nerve growth factor/

nuclear factor kappa-light-chain-enhancer of activated 
B cells (NF-κB) [49]. Overexpression of SEMA3A pro-
motes tumor progression and predicts poor prognosis 
of patients with hepatocellular carcinoma after curative 
resection [50], consistent with its similar effect on OS 
of patients with ESCC in the present study. However, 
SEMA3A expression decreases significantly as gastric 
cancer progresses and metastasizes, suggesting that 
SEMA3A may serve as a candidate tumor suppressor 
[51].

Certain limitations to this study, other than the limited 
robustness of the data for ESCC need to be acknowl-
edged. First, only a fraction of human lncRNAs (6253 of 
> 15,000) and PCGs (17,434 of > 30,000) were included in 
the analysis. Therefore, the prognostic lncRNA and PCGs 
identified here may not represent all candidates. Second, 
experimental studies on these three genes may provide 
important information that will enhance our understand-
ing of their functional roles. Third, the expression val-
ues of microarrays differ from those of RT-PCR [52, 53]. 
Therefore, we used corresponding LSB stage ratios of the 
training dataset and the ranks of the experimental  2−ΔΔCt 
values to group patients, in contrast to the same cutoff 
values of the three genes in microarray. Thus, the data 
were insufficient to confirm cutoff values of the three 
genes in RT-PCR. Nevertheless, the robustness of our 
LSB staging model using independent and experimental 
datasets indicates that this model has potential clinical 
significance for translation to the clinic as a three-gene 
microarray, likely to serve as a powerful prognostic stag-
ing model for ESCC.

In conclusion, we show here that the LSB staging model 
can accurately predict the survival of patients with ESCC. 
Moreover, the method used to construct the LSB staging 
model suggests a general strategy and effective method-
ology that will facilitate research aimed at identifying 
new clinical staging markers for other types of cancer.
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