Cancer Communications
indexed by SCI
BMC

Original article
Identification of genetic alterations associated with primary resistance to EGFR-TKIs in advanced non-small-cell lung cancer patients with EGFR sensitive mutations
Fang Wang, Xia-Yao Diao, Xiao Zhang, Qiong Shao, Yan-Fen Feng, Xin An and Hai-Yun Wang
State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P.R. China; Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China
[Abstract]

Background
Identification of activated epidermal growth factor receptor (EGFR) mutations and application of EGFR-tyrosine kinase inhibitors (EGFR-TKIs) have greatly changed the therapeutic strategies of non-small-cell lung cancer (NSCLC). However, the long-term efficacy of EGFR-TKI therapy is limited due to the development of drug resistance. The aim of this study was to investigate the correlation between the aberrant alterations of 8 driver genes and the primary resistance to EGFR-TKIs in advanced NSCLC patients with activated EGFR mutations.
Methods
We retrospectively reviewed the clinical data from 416 patients with stage III/IV or recurrent NSCLC who received an initial EGFR-TKI treatment, from April 2004 and March 2011, at the Sun Yat-sen University Cancer Center. Several genetic alterations associated with the efficacy of EGFR-TKIs, including the alterations in BIM, ALK, KRAS, PIK3CA, PTEN, MET, IGF1R, and ROS1, were detected by the routine clinical technologies. The progression-free survival (PFS) and overall survival (OS) were compared between different groups using Kaplan–Meier survival analysis with the log-rank test. A Cox regression model was used to estimate multivariable-adjusted hazard ratios (HRs) and their 95% confidence intervals (95% CIs) associated with the PFS and OS.
Results
Among the investigated patients, 169 NSCLC patients harbored EGFR-sensitive mutations. EGFR-mutant patients having PTEN deletion had a shorter PFS and OS than those with intact PTEN (P = 0.003 for PFS, and P = 0.034 for OS). In the combined molecular analysis of EGFR signaling pathway and resistance genes, we found that EGFR-mutant patients coexisted with aberrant alterations in EGFR signaling pathway and those having resistant genes had a statistically poorer PFS than those without such alterations (P < 0.001). A Cox proportional regression model determined that PTEN deletion (HR = 4.29,95% CI = 1.72–10.70) and low PTEN expression (HR = 1.96, 95% CI = 1.22–3.13), MET FISH + (HR = 2.83,95% CI = 1.37–5.86) were independent predictors for PFS in patients with EGFR-TKI treatment after adjustment for multiple factor.
Conclusions
We determined that the coexistence of genetic alterations in cancer genes may explain primary resistance to EGFR-TKIs.
Cancer Communications   Epub date: 3/2/2019   doi:10.1186/s40880-019-0354-z   [ PDF Full-text ]   

CJC Wechat 微信公众号


 

Editorial Manager


CC adopts Editorial Manager to manage its submissions from Dec.18, 2014

 Submission Guidelines  

 

Reference style for  

 EndNote,
 Reference Manager



Editorial Manager


 

Year:

 

Month:

Advanced search

Subscription


CC is now published by BioMed Central

© Cancer Communications

651 Dongfeng Road East, Guangzhou 510060, P. R. China